

The 5 cubes of the dodecahedron (a) bridge the apparent chasm between cubic (2-; 3-fold) and icosahedral (5 -fold) symmetries. Amina Bühler-Allen recently discoved 10 "squashed" cubes* (c) hidden in one of Marc Pelletier's favorite models, the stellated dodecahedron in an icosahedron (b).

Each squashed cube has 6 rhombic faces, all "fat" Richert-Penrose tiles, and
 all lying in one of the Zometool's 6 red planes. Red planes are perpendicular to red lines, where 5-fold symmetry reigns.
*parallelepipeds

$5 E$
52

In addition to building a model of Amina's sculpture, use this gift to build a number of quasi-periodic tilings that live in the red plane:

Johannes Kepler's tiling (d) of pentagons, stars and decagons,

Richert-Penrose tiles (e), the fat and skinny rhombuses that Clark Richert discovered when casting a shadow of the rhombic "triacon" (try it!),
Penrose's kites and darts (f), which use 2 lengths of struts, and

Clark Richert's "Star Pants" (g), a single (non-binary) tile that he hoped would tile the plane infinitely and quasi-periodically.

In another hyperplane, at a hyperangle to our own, Amina's cube isn't squashed at all. Since its edges are blue lines, it's projected from a 15-dimensional hypercubic lattice, where all 15 blue lines are perpendicular to each other.

