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Countless	puzzles	involve	decomposing	areas	or	volumes	of	two	or	three-dimensional	
figures	into	smaller	figures.	“Polyform”	puzzles	include	such	well-known	examples	as	
pentominoes,	tangrams,	and	soma	cubes.	This	paper	will	examine	puzzles	in	which	the	edge	
sets,	or	"skeletons,"	of	various	symmetric	figures	like	polyhedra	are	decomposed	into	
multiple	copies	of	smaller	graphs,	and	note	their	relationship	to	representations	by	props	
or	body	parts	in	dance	performance.	
	

The	edges	of	the	tetrahedron	in	Figure	1	are	composed	of	a	folded	9-gon,	while	the	cube	and	octahedron	
are	each	composed	of	six	folded	paths	of	length	2.	These	constructions	have	been	used	in	dances	created	
by	the	author	and	his	collaborators.	The	photo	from	the	author’s	1997	dance	“Pipe	Dreams”	shows	an	
octahedron	in	which	each	dancer	wields	three	lengths	of	PVC	pipe	held	together	by	cord	at	the	two	internal	
vertices	labeled	a	in	the	diagram	on	the	right.	The	shapes	created	by	the	dancers,	which	might	include	
whimsical	designs	reminiscent	of	animals	or	other	objects	as	well	as	mathematical	forms,	seem	to	appear	
and	dissolve	in	fluid	patterns,	usually	in	time	to	a	musical	score.		
	
	
	

	

	

	

	

	

Figure	1.	PVC	pipe	polyhedral	skeletons	used	in	dances	

	

The	desire	in	the	dance	company	co-directed	by	the	author	to	incorporate	polyhedra	into	dance	works	led	
to	these	constructions,	and	to	similar	designs	with	loops	of	rope,	fingers	and	hands,	and	the	bodies	of	
dancers.	Just	as	mathematical	concepts	often	suggest	artistic	explorations	for	those	involved	in	the	
interplay	between	these	fields,	performance	problems	may	suggest	mathematical	questions,	in	this	case	
involving	finding	efficient	and	symmetrical	ways	to	construct	the	skeletons,	or	edge	sets,	of	the	Platonic	
solids.		

In	one	performance,	we	present	an	audience	member	with	the	puzzle	of	folding	this	shape	 	,	
constructed	from	PVC	pipe	sections	which	fold	at	the	vertices,	into	a	tetrahedron.	In	the	2009	music	and	
dance	concert	Harmonious	Equations	[2]	we	gave	ourselves	the	puzzle	of	folding	one	shape	wielded	by	
three	dancers	into	a	cube	and	octahedron,	and	came	up	with	a	PVC	pipe	hexagon	with	pendant	edges	at	

each	hexagon	vertex,	 which	also	folds	to	form	a	doubled-edge	tetrahedron.	In	[4]	the	authors	
showed	classroom	activities	involving	making	polyhedra	with	PVC	pipe,	fingers,	and	loops	of	string;	George	
Csicsery	documented	the	latter	two	of	these	in	a	series	of	short	films	[1].	In	various	papers	the	author	
investigated	modular	constructions	of	the	Platonic	solids	in	a	manner	reminiscent	of	modular	origami:	in	[5]	
the	author	showed	how	to	construct	the	five	Platonic	solids	with	six	loops	of	three	colors,	in	[3]	with	length	
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six	PVC	pipe	modules,	and	with	the	bodies	of	six	dancers,	and	in	[6]	constructions	of	the	Archimedean	solids	
and	various	plane	tessellations	with	one	six-edge	tree.	
	
In	this	paper,	we	will	explore	a	variety	of	puzzles	derived	from	constructions	like	those	described	above,	in	
this	case	using	multiple	copies	of	small	trees	made	from	paper	straws.	Similar	puzzles	can	also	be	created	
with	simple	paper	diagrams.	Here’s	a	simple	example	of	five	graphs	called	trees,	several	of	which	fold	at	the	
vertices	to	give	the	skeleton	or	edge	set	of	a	regular	tetrahedron	(which	ones?).	Here	Tn(a,b,c),	for	example,	
indicates	a	tree	with	n	edges	and	pendant	edges	of	lengths	a,	b,	and	c.	(Note:	this	notation	may	not	
uniquely	specify	a	graph	for	larger	examples	than	we	are	considering	here.)	
	

	
					T6(1,2,3)	 	 T6(1,1,1,2)	 									T6(2,2,2)	 	 										T6(6)	 	 							T6(1,1,4)	

	
Figure	2.	Trees	which	might	fold	to	a	tetrahedron	(which	ones?).	

	
Over	the	last	twenty	years,	since	we	began	incorporating	such	polyhedra	into	our	dance	works,	the	author	
has	created	a	variety	of	such	puzzles,	and	I	imagined	it	might	be	a	good	idea	to	find	a	way	to	market	
physical	examples	of	the	puzzles.	Recently,	however,	I	had	an	epiphany	and	decided	to	try	to	answer	the	
question,	“What	would	Mary	Laycock	do?”	Mary	Laycock	was	a	pioneer	In	the	use	of	manipulatives	and	
physical	activities	in	math	classes.	She	wrote	a	book,	Straw	Polyhedra,	which	is	still	in	publication,	in	which	
she	showed	how	to	use	straws	and	bobby	pins	to	construct	polyhedra	very	simply	and	inexpensively.	So,	I	
decided	to	find	a	way	to	construct	physical	edgy	puzzles	for	very	little	money,	as	a	kind	of	homage	to	Mary	
Laycock.	
	
By	the	way,	Mary	Laycock	was	a	follower	of	Zoltan	Dienes,	a	math	educator	who	created	numerous	whole	
body	and	dance	class	activities	for	elementary	and	middle	school	students.	Dienes	was	the	son	of	Valeria	
Dienes,	a	prominent	Hungarian	dancer	and	choreographer	who	invented	a	somewhat	mathematical	dance	
notation.	She	also	brought	her	family	to	live	in	the	commune	established	in	Greece	by	Isadora	Duncan’s	
brother,	at	which	dance	was	an	integral	part	of	the	schooling	of	young	Zoltan.	So,	there's	a	nice	dance	
history	connection	here	as	well!	
	

	The	simple	construction	method	I’ve	found	most	useful	is	to	
use	paper	straws	for	the	edges,	pipe	cleaners	to	join	them	
together	at	the	vertices,	and	a	drop	of	super	glue	to	hold	
everything	together	(Figure	2).	The	pipe	cleaners	are	flexible,	
yet	hold	their	shapes,	and	the	short	pipe	cleaner	"tabs"	at	the	
ends	allow	the	easy	construction	of	three	dimensional	
models.		
	
I’ve	found	that	paper	straws	are	more	expensive	than	plastic,	
but	the	glue	does	not	hold	to	the	plastic	very	well,	and	
students	playing	with	puzzles	built	with	glue	and	plastic	
straws	tend	to	pull	them	apart	too	easily!	I	have	had	some	

success	punching	holes	in	plastic	straws	and	threading	pipe	cleaners	through	them,	as	shown	on	the	right	in	
Figure	2,	but	this	is	much	more	labor	intensive	than	the	method	using	paper	straws.	Glen	Whitney	(founder	
of	MoMath)	tells	me	that	restaurants	are	beginning	to	replace	plastic	with	paper	straws,	so	we	expect	–	or	
hope	-	that	the	price	of	paper	straws	will	soon	drop.		



	
	
	
Puzzles	
Below	are	a	collection	of	puzzles	that	can	be	solved	using	the	straw	and	pipe	cleaner	manipulatives	or	else	
using	paper	and	pencil	methods.	Figure	3	shows	how	to	use	the	paper	and	pencil	puzzles	to	record	a	
decomposition	of	the	edges	of	the	tetrahedron	in	Figure	3(b)	using	the	tree	in	Figure	3(a).	We	will	call	that	
tree	T6(1,2,3)	since	it	has	six	edges	and	three	sets	of	pendant	edges	of	lengths	1,	2,	and	3.	Figure	3(b)	is	a	
puzzle	diagram	for	the	tetrahedron,	and	Figure	3(c)	shows	how	we	can	draw	over	the	diagram	to	solve	the	
puzzle.	Notice	that	we	allow	vertices	to	"overlap"	or	be	identified,	for	example	vertices	A	and	B	in	the	
figure,	but	the	edges	must	remain	distinct.	

	
Figure	3	

	
Alternatively,	we	might	fold	a	regular	tetrahedron	out	of	a	T6(1,2,3)	tree	made	up	of	straws	and	pipe	
cleaners.	A	regular	tetrahedron	has	edges	that	are	all	the	same	length,	so	the	straw	T6(1,2,3)		will	also	have	
edges	of	equal	length.	
	
It	turns	out	that	T6(1,2,3)	is	a	very	versatile	tree,	as	multiple	copies	of	T6(1,2,3)	will	decompose	the	edges	of	
each	Platonic	solid,	each	Archimedean	solid,	as	well	as	each	regular	and	semi-regular	planar	tessellation;	
see	[6]	for	these	decompositions.	T6(1,2,3)	will	also	decompose	the	edges	of	each	of	the	Catalan	solids,	
which	are	the	duals	of	the	Archimedean	solids	as	well	as	the	edges	of	many	grid,	cylinder,	and	toroidal	
graphs,	some	Johnson	solids,	and	most	duals	of	the	semi-regular	tessellations	(contact	the	author	for	these	
solutions).		
	
The	grid	graph	Pm	X	Pn	is	the	Cartesian	product	of	the	paths	Pm	and	Pn	with	m	and	n	vertices,	respectively.	
The	formal	definition	of	the	Cartesian	product	G	X	H	of	graphs	G	and	H	is	the	graph	with	vertices	(u,v),	
where	u	and	v	are	vertices	in	the	graphs	G	and	H,	respectively;	and	with	edges	(u,v)(u'v'),	where	either	u	=	
u'	and	vv'	is	an	edge	in	H,	or	v=v'	and	uu'	is	an	edge	in	G.	
	
Less	formally,	for	the	grid	graph	Pm	X	Pn	we	take	a	grid	of	m	rows	and	n	columns	of	vertices,	with	the	
vertices	connected	by	edges	in	rectangular	fashion	(the	graph	in	the	upper	left		of	Figure	4,	for	example,	is	
P3	X	P3).	The	graph	Cn	is	the	cycle	with	n	vertices,	and	Pm	X	Cn	is	a	"cylinder	graph"	or	the	skeleton	of	the	n-
prism.	The	graph	Cm	X	Cn	is	known	as	a	toroidal	graph,	since	it	is	embeddable	on	the	torus	without	edges	
crossing.	In	Figure	4	are	a	variety	of	somewhat	easy	decomposition	puzzles;	below	each	graph	is	the	tree	
multiple	copies	of	which	will	edge-decompose	the	graph.	The	bottom	row	shows	the	graphs	P2	X	C6	and	P2	X	
C4.	The	edges	of	these	graphs	which	extend	out	to	the	left	we	imagine	connect	to	the	rightmost	pair	of	
vertices.	P2	X	C4	is	actually	the	cube.	 	



	
Figure	4	



Many	more	such	puzzles	are	easy	to	construct	and	solve.	Here	are	a	variety	of	extensions	or	generalizations	
of	these	decompositions	which	are	all	solvable	and	for	which	you	might	want	to	try	to	find	solutions	[7].	
The	"Examples"	are	small	or	initial	cases	which	in	some	cases	generalize	easily,	and	many	of	which	make	
enjoyable	puzzles.	Paper	and	pencil	versions	are	included	in	Figures	4,	5,	and	6.	
	
Two-dimensional	grids	and	cylinders.	
Pn	X	P4k+n	by	T4(1,1,2).	Example	P3	X	P7,	see	Figure	6.	
P4m	X	P4n	by	P5.	Example	P4	X	P4	on	previous	page.	
P4m+2	X	P4n+2	by	P5.	Example	P6	X	P6,	see	Figure	6.	
P3m	X	P3n	by	P4.	Example	P3	X	P3	on	previous	page.	
P3m+1	X	P3n+1	by	P4.	Example	P4	X	P4	on	previous	page.	
Pm	X	C4n	by	P5.	Example	P3	X	C4,	see	Figure	6.	
Pm	X	C4n	by	T4(1,1,2).	Example	P2	X	C4	on	previous	page.	
P2	X	Cn	by	P4.	Example	P2	X	C4,	the	3-cube,	see	Figure	6.	
P3	X	C3n	by	P4.	Example	P3	X	C3,	see	Figure	6.	
P3	X	C4n	by	T4(1,1,2).	Example	P3	X	C4,	see	Figure	6.	
P4	X	C3n	by	P4.	Example	P4	X	C3,	see	Figure	6.	
P3k+2	X	Cn	by	P4.	Example	P5	X	C4,	see	Figure	6.	
C3	X	C4n	by	P5.	Example	C3	X	C4,	see	Figure	6.	
Cn	X	C3n	by	P4.	Example	C3	X	C4,	see	Figure	6.	
	
Three-dimensional	grids	
P2	X	P3	X	P3k	by	P4,	k	≥	1.	Example	P2	X	P3	X	P3	by	P4,	on	next	page.	
P3	X	P3	X	Pn	by	P4,	n	≥	1.	Example	P3	X	P3	X	P3	by	P4	on	next	page.	
P3	X	P3	X	P5	by	P5,	see	Figure	6.	
P4	X	P4	X	P3k+1	by	P4,	k	≥	1.	Example	P4	X	P4	X	P4	by	P4.	
P2	X	P5	X	P5	by	P4,	see	Figure	6.	
	
Mixed	examples	
P2	X	P3	X	P3	by	6P5	+	3P4,	see	Figure	6.	(Endless	similar	possibilities	-	make	some	up!)	
P3	X	P4,	with	two	colored	edges	decomposed	by	several	trees,	see	top	right	of	Figure	6.	
	
In	Figure	5	are	a	couple	of	three-dimensional	paper	and	pencil	grid	puzzles	plus	a	few	polyhedra.	For	the	
polyhedra	paper	and	pencil	diagrams	we	do	not	insist	that	all	edge	lengths	are	equal,	to	facilitate	drawing	
them	efficiently;	however,	if	building	them	out	of	straws	and	pipe	cleaners	the	Platonic	and	Archimedean	
solids	[6]	are	constructible	with	equal	length	straws.	The	"decastar,"	a	decagon	with	length	two	paths	
attached	to	each	decagon	vertex,	is	what	might	be	called	an	edge-GCD	of	the	regular	dodecahedron	and	
icosahedron.	An	edge-GCD,	or	edge-greatest	common	decomposer,	of	two	graphs	G	and	H	is	a	(not	
necessarily	unique)	graph	with	the	largest	number	of	edges	that	edge-decomposes	both	graphs.	(In	[6]	the	
author	showed	that	T6(1,2,3)	is	the	unique	edge-GCD	of	the	five	Platonic	Solids.)	The	decastar	may	be	easily	
modified	to	create	a	solution	to	a	problem	posed	in	Math	Horizons	to	find	a	graph	with	the	fewest	number	
of	leaves	that	decomposes	both	the	dodecahedron	and	icosahedron	[8].	In	the	diagram	of	the	icosahedron	
on	the	next	page,	the	vertices	labeled	x	are	"	identified"	and	considered	to	be	one	vertex.	Because	the	
decastar	easily	decomposes	into	five	copies	of	T6(1,2,3),	the	decastar's	decomposition	of	the	dodecahedron	
and	icosahedron	also	provide	decompositions	by	T6(1,2,3).	
	
	
	
	



	
	
	

	
	

	

	
Figure	5	
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