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Roll a circle around another circle of the same radius. A
marked point on the first circle traces a curve called a
cardioid. (In figure 1 we rolled the orange circle around
the red circle to draw the green cardioid.) This beau-
tiful heart-shaped curve shows up in some of the most
unexpected places. Grab a cup of coffee and we’ll show
you some.

Figure 1. Roll a circle around another circle of
the same radius and a point on the first circle
traces a cardioid.

We do not know who discovered the cardioid. In 1637
Étienne Pascal—Blaise’s father—introduced the relative
of the cardioid, the limaçon, but not the cardioid itself.
Seven decades later, in 1708, Philippe de la Hire com-
puted the length of the cardioid—so perhaps he discov-
ered it. In 1741, Johann Castillon gave the cardioid its
name.

Got your coffee? Turn on the flashlight feature of your
phone and shine the light into the cup from the side. The
light reflects off the sides of the cup and forms a caustic
on the surface of the coffee (see figure 2). This caustic
is a cardioid.

The Mandelbrot set is one of the most beautiful im-
ages in all of mathematics (see figure 3). It is the set
of complex numbers c such that the number 0 does not
diverge to infinity under repeated iterations of the func-

Figure 2. Shine a light from the edge of a coffee
cup and the caustic it forms is a cardioid.

tion fc(z) = z2 + c. The Mandelbrot set consists of a
heart-shaped region with infinitely many circles, spiny
antennae, and other heart-shaped regions growing off of
it. That main heart-shaped region? It’s a cardioid.

Cardioids even show up in audio engineering. Some-
times engineers need a uni-directional microphone—one
that is very sensitive to sounds directly in front of the mi-
crophone and less sensitive to sounds next to or behind
it. When they do, they reach for a cardioid microphone.
The microphone is so-named because the graph of the
sensitivity of the microphone in polar coordinates is a
cardioid.

In this article, we present a few favorite places that
cardioids appear. In particular, we will look at how we
can use lines to construct the curved cardioid. At the
end of the article, we provide a template that you can use
to make your own cardioid. And we provided printable
pages that can be used to make a cardioid flip book.

The Envelope of a Family of Curves
A common kids math doodle is to draw a set of coor-
dinate axes and then draw line segments from (0, 10)
to (1, 0), from (0, 9) to (2, 0), and so on, as in figure 4.
This procedure magically produces a suite of lines that,
when viewed together, has what appears to be a curved
boundary. This curve is called the envelope of the family



Figure 3. The main bulb of the Mandelbrot set
is a cardioid.

of lines.
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Figure 4. A curve as an envelope of lines.

Let Ct denote a family of curves parametrized by t.
We can represent them as F (x, y, t) = 0 for some func-
tion F : R3 → R. For instance, in this elementary exam-
ple, the line Ct joins (0, 11−t) to (t, 0), so it corresponds
to F (x, y, t) = yt+ (11− t)(x− t) = 0.

Let us look at some features of this envelope. First,
each line Ct is tangent to the curve. Second, if we take
two nearby lines Ct and Ct+h, their point of intersection
is near the curve, and taking the limit as h → 0 yields a
point on the curve. We could use either of these observa-
tions to produce a definition of an envelope, but instead,
we use calculus.

In the following definition we let Ft =
∂F
∂t denote the

partial derivative of F with respect to t.

Definition. Let F : R3 → R be a differentiable
function. The envelope of the set of curves F (x, y, t) = 0
is the set of points (x, y) such that both F (x, y, t) = 0

and Ft(x, y, t) = 0 for some value of t.

This is a mysterious definition. Why does it produce
the envelope? For a fixed t and any h ≈ 0, the curves
F (x, y, t) = 0 and F (x, y, t + h) = 0 (that is, Ct and
Ct+h) cross at a point near the envelope. Solving this
pair of equations for x and y is equivalent to solving
F (x, y, t) = 0 and 1

h (F (x, y, t+h)−F (x, y, t)) for x and
y. Then, as h → 0, the point of intersection approaches
a point on the curve. Thus, we find the point by solving
F (x, y, t) = 0 and

lim
h→0

F (x, y, t+ h)− F (x, y, t)

h
= Ft(x, y, t) = 0

for x and y.
Returning to our example in figure 4, Ft(x, y, t) =

y−x−11+2t. If we set this expression equal to 0, solve
for t, and substitute it into F (x, y, t) = 0, we obtain the
equation (x + y − 11)2 − 4xy = 0, which is a parabola
opening along the line y = x. We can see this curve
more clearly if we extend our figure beyond 1 through
10 (see figure 5).

Figure 5. The envelope of lines is a parabola.

A Cardioid as an Envelope of Lines
It turns out that we can construct the cardioid as the
envelope of curves, and we can do so in a number of dif-
ferent ways. For instance, pick a point P on a circle (the
blue circle in figure 6, say). Draw circles with centers on
the original circle that pass through P . The envelope of
these circles is a cardioid.

But we will focus on a different example. Begin with a
circle (the red circle in figure 7). Mark a certain number
of evenly spaced points around the circle, N , say, and
number them consecutively starting at some point P :
0, 1, 2, . . . , N − 1. Then for each n, draw a line between
points n and 2n (mod N). In our example, N = 54, so
we would join points 5 and 10, 19 and 38, and 31 and 8
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Figure 6. A cardioid as an envelope of circles.

(since 8 is 62 mod 54). The envelope of these lines is a
cardioid.
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Figure 7. A cardioid as an envelope of lines.

Let’s see why this is the case. Suppose our circle has
center (1, 0) and radius 3 and that P = (4, 0). Now,
starting at P , find points t and 2t radians around the
circle from P , and draw the line segment joining them.
We will show show that the envelope of all such lines is
the cardioid with polar equation r = 2(1 + cos θ).

The two points on the circle—corresponding to t and
2t—have coordinates (3 cos t+1, 3 sin t) and (3 cos(2t)+
1, 3 sin(2t)). The line joining them is

y − 3 sin t =

(
sin(2t)− sin t

cos(2t)− cos t

)
(x− 3 cos t− 1).

After some some algebra and some applications of double

angle formulas, we can express this line as

(cos(2t)−cos t)y−(sin(2t)−sin t)x+sin(2t)+2 sin t = 0.

In particular, the expression on the left is our function
F (x, y, t). Taking the partial derivative of F with respect
to t we obtain

Ft(x, y, t) =(−2 sin(2t) + sin t)y − (2 cos(2t) + cos t)x

+ 2 cos(2t) + 2 cos t.

Now, we want to show that the x and y coordinates
at which F (x, y, t) = Ft(x, y, t) = 0 is a point on the
cardioid r = 2(1 + cos θ). The cardioid has one more
surprise for us: This happens when t = θ (see figure
8)! We can express this polar curve with parametric
equations as

x = 2(1 + cos θ) cos θ

y = 2(1 + cos θ) sin θ.

And when we replace θ with t and substitute these ex-
pressions for x and y in F and Ft, we obtain 0. (The
tedious calculations require both algebra and further ap-
plications of the double angle formula.) Thus, the car-
dioid is the envelope of this family of lines.

t t

Figure 8. The secant line joining points on the
circle with central angles t and 2t meets the car-
dioid at the point with polar angle t.

Back to the Coffee Cup
It turns out that this analysis explains the cardioid in
the coffee cup. We can view the caustic as an envelope of
lines. As we see in figure 9, if we draw lines emanating
from a single point P on the circle and allow them to
reflect off the circle (the angle of incidence equalling the
angle of reflection), then the cardioid is the envelope of
these lines.

If the light source is located at point P , then a beam of
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Figure 9. Draw segments from a point on a circle
and have them reflect off the second point. The
envelope of these lines is a cardioid.

light will reflect off a point Q on the circle and strike the
circle again at R (see figure 10). Since arc PQ equals
arc QR, arc PR is twice arc PQ. But then segment
QR is a line that we would have drawn in the previous
construction.
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Figure 10. If a ray of light emanating from P
strikes the circle at Q and then R, then arc PR
is twice arc QR.

The coffee cup example requires one final comment.
In reality, the light source will probably not be at the
edge of the coffee cup, but rather, it will be far away
from the cup. In this case, the rays of light are roughly
parallel when they reach the cup. In this case, the curve
won’t be a cardioid, but its cousin—a nephroid. This is
the envelope of lines one obtains by joining n and 3n.
In particular, as we see in figure 11, arc QR is twice arc
PQ. (So in our numbering, n = 0 sits at the point P .)
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Figure 11. When the light rays come in parallel
to one another, the caustic is a nephroid.

Draw Your Own Cardioid
The following page has a circle with 60 numbered points.
Connect each number n to the number 2n mod 60 to
obtain a cardioid. For a little extra fun, try connecting
n to 3n or 4n or 5n to see what shapes you obtain.

Flip Book Instructions
The final 12 pages of the article are a printable flip
book. Print the pages double-sided. The pages are
designed so that the mathematical figure is on one side
and the flip book page number is on the reverse side.
Cut out each page, put in numerical order, and secure
with a binder clip. Flip through the pages and see the
animation in action!

Figure 12. Flip book.

David Richeson is a professor of mathematics at Dickin-
son College and is the editor of Math Horizons, the un-
dergraduate magazine of the Mathematical Association
of America. You can find him online at divisbyzero.com
and at @divbyzero on Twitter.
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