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The object that gave rise to the math in this paper is “hinge elastegrities”, a class of structures that originally 
arose from two Bauhaus exercises assigned at the Yale School of Architecture in the 1970’s and investigated 
in a series of art projects. The key new object obtained in 1982 involved cutting slits into folded pieces of 
paper and weaving them into 8 irregular tetrahedra, each with 3 isosceles right-triangle faces outlining an 
equilateral face fig.2b The 8 tetrahedra are suspended with 12 pairs of moving isosceles-right-triangles, 
congruent to the tetrahedral face right triangles fig.2a giving rise to an icosahedral shape (not necessarily 
regular) fig.2. Each pair of right triangles is attached to each other with an elastic hinge, along one of its 
isosceles legs fig.2a that act as springs. The other isosceles legs are free and frame one of 6, four-sided gates, 
that open and close as the structure moves fig.3a. The pair of moving right triangles is also attached along their 
hypotenuse, with elastic hinges, to the hypotenuse of the faces of 2 tetrahedra. The 2 tetrahedra are thus linked 
by a hinged pair of moving triangles fig.3b. As the structure moves, the dihedral angles between the 12 pairs 
of moving triangles contract to 0o and expand to 180o while the 24 dihedral angles between tetrahedra and 
moving triangles contract to 0o and expand to 53.735o.  
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The moving right triangles frame 3 pairs of gates, parallel to each other, that open and close in unison. 
Each gate has four sides, defined with four vertices: 2 bottom hinge pivot-vertices fig.4b and 2 acute  
isosceles angle pivot-vertices formed by the hypotenuses and the free isosceles leg of the moving triangles. 
fig.4c. The 12 pivot-vertices-of-acute-isosceles-angle are also the  same vertices of the 12 top-of-hinge-
pivot-vertices linking two adjacent moving triangles fig4c. that frame an adjacent gate, oriented at right 
angle to the original gate. For example the top-of-the-hinge pivot-vertex for gate 5 fig.6g is also the pivot 
vertex of the acute isosceles angle for gate 1 fig.6f, which is at right angles with gate 5. The top of hinge for 
gate 3 fig.6d is also the pivot vertex for the acute isosceles angle of gate 1 fig.6d. Gate 5 is parallel to gate 3 
and both are perpendicular to gate 1.  
 
Each gate is framed with 2 pairs of hinged triangles fig.2a. Each tetrahedron is attached to one of the 
triangles of 3 hinged triangles pairs fig.7 & fig.8. The 3 elastically hinged triangle pairs, act like springs 
supporting and linking each tetrahedron with a pair of triangles acting as springs, to 3 tetrahedra. When the 
structure moves, the 3 tetrahedra rotate with opposite chirality to the original, “floating” like rigid islands 
in a sea of elasticity to paraphrase Julian Rimoly’s  of Georgia Tech, definition for tensegrities. 
Tensegrities are related structures made of struts, nodally connected with prestressed cables fig 1. 
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Fig.7 Looking down on the top     Fig.8 Looking up from the bottom 
The chiral icosahedral hinge elastegrity has noteworthy physical and geometric properties. When the 8 
tetrahedra with 3 orthogonal faces, are compressed along any one of 4 axes, the hinges contract in unison, 
gyrating 4 tetrahedra clockwise and 4 counterclockwise, until the 8 tetrahedra rest back to back into a 
regular octahedron. When pulled along one of four axes, the structure extends with reverse gyration into a 
cuboctahedron. When external forces are removed, elastic forces in the hinges return the structure 
isometrically, into its original icosahedral shape (not necessarily regular). Because of similaritiesi in 
symmetry and elasticity of the structure with tensegrity figures Fig. 1 that maintain shape integrity by pre-
stress tension alone, these new objects that maintain shape integrity through elastic hingesii were named 
“hinge elastegrity”. 
 
The hinge elastegrity’s shape-shifting through further folding was presented at G4G12 and it led to a 
number of familiar geometric objects, as well as some new ones fig. 9. The hinge elastegrity can flatten into 
a multiply covered square, morph into shapes with the vertices of each of the Platonic shapes, model the 
hypercube, transform into objects symmetrical to 6-strut, 12-strut, 30 strut, and 60 strut tensegrity, as well 
as take the shape of new figures with the vertices of congruent faces that are not regular polygonal regions. 
Co-presenter at G4G12, professor Thomas Banchoff, termed these figures monohedra. The object obtained 
through folding and trigonometry, has twelve congruent pentagons, each pentagon having one right angle. 
The side of the pentagon across the right angle is 0.54.. of the four equal sides. Using analytic geometry, 
Banchoff generalized this unique new monohedron-dodecahedron into a continuum family of 
monododecahedra (f=12 congruent not regular). Through folding, the smaller side can vary from expanding 
to be equal to the other 4 sides becoming regular dodecahedron, to decreasing to 0, the variable side 
becoming a point, thus the monohedron dodecahedron becoming rhombic.  

 

Fig. 9 Partial Elastegrity tree of forms through folding  
Platonic Solids:Tetrahedron b-1-2-3, Cube b-1-3, Octahedron b-2-2, 

Regular dodecahedron b-1-4, Icosahedron b-1; 
Tensegrities: Same symmetry as a 6-strut b-1; 12-strut b-1-6 
Jitterbugs gyration symmetrical in 2 directions along 3 axes:  

Cube b-1-3, Flat square goes up and down, b-1-2; 
Mono-dodecahedron continuum                                   

 Pentagonal dodecahedron 1 right angle b-1-4, =>    
 regular b-1-5 => rectangle with one angle 180o 

2-d Square: b-1-2, to 3-d Cube b-1-3, to 4-d Hybercube: b-1-7. 
 

D fractal of B derived through 3-d folding of b-1 into b-1-1, into b-1-3   
(they have the same creases but different orientation in 3-d) 
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Geometry of Motion of 13 axes and Movement of Vertices Outlining a Dodecahedron  
The geometry of motion of the Chiral Icosahedral Hinge Elastegrity’s members is presented here, in 
relation to 13 axes in 3 sets: a. a set of 4 tetrahedral, fig. 5, 6, 7 blue, b. a set of 3 orthogonal, fig. 5, 6, 7 yellow, and 
c. a set of 6 diametric axes through opposite icosahedral vertices, fig. 5, 6, 7 green.   
 
Also we present the geometry resulting from movement of 20 vertices: 12 hinge-bottom-pivot-vertices 
together with 8 right-angles-vertices of the orthogonal tetrahedral faces, outline a dodecahedron. We show 
that a force applied on the icosahedron actuates motion of the 20 vertices replicating through movement 
the same geometric transformations, as those presented at G4G12 through folding: a continuum of 
dodecahedra shapeshifting from regular, to monohedral (congruent faces but not regular), to rhombic.  

 

 Fig.10 cuboctahedron 
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 expanded to 54.347°   

 Fig.11 regular  
 Icosahedron  
 Dihedral angles 
 between each of 12     
pairs of moving 
 triangles is 90°; 
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 between tetrahedral 
 and moving 
 triangles is 28.72°  

 Fig.12 octahedron 
12 dihedral angles  
 between moving   
 triangles  
 contracted to 0°; 
  
24 dihedral angles  
 between moving & 
 tetrahedral triangles 
 contracted to 0°. 

a. Tetrahedra translate and spin along 4 axes (blue) 

              

4 tetrahedral axes through the center of opposite tetrahedra A-A’, B-B’, C-C’, D-D’  
3 orthogonal axes through the center of the gates showing,  

• counterclockwise spinning of A, B, C, D 
• clockwise spinning of A’, B’, C’, D’ 

Tetrahedra D and B’ share common pivot vertex DB’ one on one side of the gate and  
tetrahedra A and C’ share common pivot vertex AC’ on the other side of the gate and 
rotate around their shared hinges so that common vertex C’D and AB’ become congruent when the 
structure contracts into an octahedron. 
Fig. 13 Clockwise and counterclockwise tetrahedral spinning around 4 axes as 6 gates close  

When a pair of  diametrically placed tetrahedra are pressed together, along any of 4 axes, defined by 
opposite centers of equilateral faces of the 8 tetrahedra (blue fig.5, 6, 7), the 4 axes gyrate around the 
structure’s center fig.13. The 8 asymmetrical tetrahedra spin and slide along the gyrating axes towards the 
center, into an octahedron. As the structure contracts, the orthogonal faces of 2 tetrahedra sharing a pivot 
vertex rest back to back, squeezing between them, a folded pair of hinged moving right triangles, also 
hinged to the 2 tetrahedra along their hypotenuse. As the 6 gates close, the 8 right angle vertices of the 
orthogonal tetrahedral faces and the 12 bottom hinge pivot points, become congruent with each other and 
with the center of the structure.  
 
When any two opposite tetrahedra are pulled away from each other, along any of the 4 axes, the 36 elastic 
hinges also actuate simultaneously movement of the entire structure. The 8 tetrahedra spin and slide away 
from the structure’s center, in unison along the 4 axes, as the axes gyrate with reverse chirality, around the 
structure's center. The 12 dihedral angles of moving pairs of triangle, open to 180O, while the 24 hypotenuse 
dihedral angles expand to 54.375O. The 8 equilateral triangle faces of the tetrahedra rotate as they move 
away from the center to become the 8 equilateral faces of a cuboctahedron fig.10 red triangle.   
b. Movement of the gates around 3 stable orthogonal axes (yellow) 
3 orthogonal axes are defined by the centers of the 3 opposite pairs of gates. When a force actuates motion 
along any of the tetrahedral axes activating contraction or expansion of the 36 hinges, the 6 gates axes 
open and close around the 3 axes. The centers of the gates slide away in 8 directions when the structure is 
expanding, and towards the center when the structure is contracting.  

 
As the dihedral angles of the moving triangles approach 0O, the angle between the free isosceles legs 
pivoting around the bottom-hinge-vertex also approach 0O. Simultaneously the width of the gates, the 
distance between the two bottom-hinge-pivot-vertices across each gate, decrease approaching zero. 
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As the 36 dihedral angles contract to 0O  and the structure contracts into an octahedron, each of the 6 sets 
of 4 rotated isosceles legs, edging the gates, become congruent with the axes of the octahedron. The 
orthogonal axes of the structure become congruent with the orthogonal axes of opposite vertices of the 
octahedron. In addition a) the 2 hinges linking the 4 triangles surrounding each gate, b) the 4 edges of the 2 
pairs of tetrahedra that each shares the top of the 2 hinge vertices of a gate on either side fig.4a. as well as c)  
the 4 gate-edges contracted to 0O, all 10 (2 hinges+4 tetrahedral edges+4gate-edges) become congruent.  
 
As tension is applied on any of the 4 tetrahedral axes, the gates open pivoting with opposite chirality 
around the 3 axes. As the dihedral angles of the moving triangles open towards 180O, the gates’ width  

 

decreases again. When the dihedral angle becomes 180O, the two moving right triangles 
on either side of the hinges, align into 2 bigger right triangle, on either side of the gate, 
flattening into a square Fig.14. The free isosceles legs that are the gate edges, rotate 180O, 
closing the gates, and forming the diagonal of the square faces of the cuboctahedron. 
Fig.14  Diagonals of cuboctahedron square faces show closed gates when structure is expanded.  

The 3 orthogonal axes pass through the centers of the 6 diagonals of the cuboctahedron squares that are the 
closed gates of the structure. Somewhere between the gate-edges closing by rotating the angle between 
them to 0O, when they align becoming congruent with the orthogonal axes and each other, and closing by 
rotating to 180O, expanding into the diagonals cuboctahedron square faces, the opening of the gates’ 
becomes maximum.  As we will discuss with more detail below the maximum gate width is achieved when 
the dihedral angles between moving triangles is 90O. 
c. 6 axes passing through diametrically opposite icosahedral vertices  

 

A set of 6 axes (green) is defined by pairs of diametrically opposite vertices of the 
icosahedron, forming 3 pairs of X. Each X passes through the 4 acute-angle-
pivot-vertices of two parallel gates on either sides of the structure’s center Fig.4b. 
In the illustration Fig.15 the 3 pairs of X are formed by axes 4 & 2, 3 & 6, 5 & 1. 
As the structure contracts the 3 pairs of X pivot towards each other, as they close 
around the 3 orthogonal axes, until each pair of axes becomes congruent with the 
orthogonal axes that pass through the gate centers 4 & 2 with axis 1, 3 & 6 with 
axis 2, and 5 & 1 with axis 3.  
Fig 15 Diametric axes 4 & 2, 1 & 3, 5 & 1 form X, congruent with 3 orthogonal axes when closed. 

 

 
When the structure expands into a cuboctahedron, each pair of axes passing through 
diametrically opposite vertices forming an X open to 60O. 
Fig 16 When structure expands into a cuboctahedron 3 X each open to  60

 O

 

d. Regular dodecahedron, to monohedron, to rhombic dodecahedron through movement 
Examining the movement of the 13 axes, and in particular pondering  the closing, opening, and closing 
again of the gates, as the structure contacts into an octahedron and expands into a cuboctahedron, raised 
the question, at what point is the gate width maximal?  

 
 Fig.17 dihedral   
iangle = 90° 

 Attempting to answer the question of when do the gates achieve maximal width led to the 
realization that when the distance between 2 vertices across a gate is equal (fig.17 red line) then 
the implied 12 tetrahedra, created by drawing the 6 red lines, are congruent with the 8 
tetrahedra suspended by the moving triangles (fig.17 green lines) and therefore the dihedral angle 
between each pair of moving triangles is 90°. The distance from each of the 20 right angle 
vertices of the orthogonal faces of the 20 congruent tetrahedra to the 3 adjacent right angle  

vertices of the 20 congruent tetrahedra is equal and the 20 vertices outline a regular dodecahedron. 2 of the 
vertices shown with black dots fig.18 show the width of a gate, which is equal to the 30 edges the regular 
dodecahedron shown on fig.19.   In fig.18 the 8 “floating” tetrahedra are A, B, C, D and diametrically opposite 
with reverse chirality A’, B’, C’, D’. In fig.19 the bottom of hinge pivot vertices are indicated with the letter of 
the two tetrahedra sharing the hinge: AB’, AC’, AD’, BC’, BD’, CD’, A’B, A’C, A’D, B’C, B’D, C’D, the right angle vertices of 
the orthogonal faces of the 8 floating tetrahedra are indicated with A, B, C, D, A’, B’, C’, D’ 
adodecahedron = ru dodecadron (radius of a circumscribed sphere in a dodecahedron) / 1.401258538..=> adod = 0.248aico  (derivation below) 
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fig.18  Coordinates of a regular icosahedron when      fig.19 Coordinates of regular dodecahedron when the dihedral angles     

The dihedral angles are  90°                    are  90°, pentagonal sides are equal, doted lines indicted gates. 
ru dod = ri ico(radius of inscribed icosahedron ι) – h height of tetrahedron => 0.7558aicosa – 0.408aicosa = 0.348aicosa  

• because riicosahedron(radius of inscribed icosahedron ι) = 0.7557623142aicosa   
• and htetrahedron  = riocta (radius of inscribed octahedron) = rioctacedron = 0.408aiocta =0.408aiico  ( aocta=aicosa) 

so ru dod / 1.401258538 = 0.248aicosahedron     is the  width of the gate when the icosahedron is regular.  
1. When a force contracts the icosahedron, so that the moving triangle hinge dihedral angles is less than 90°, 

then the 20-vertice-dodecahedron decreases isometrically and proportionally, and remaining regular, until 
the 20 vertices become congruent with the center of the structure, and shrink to a point when the structure 
contracts into an octahedron.  

2. When a force expands the icosahedron so that the moving triangle dihedral angles are greater than 90°, 
then the width of the 6 gates decrease again while the other 4 pentagonal sides increase. 
Therefore 6 gate Max width = 0.248aico when the dihedral angles between moving triangles = 90° 

 

• A polyhedron with congruent non-regular faces, (4 equal pentagonal sides but one side smaller) has been 
termed a monododecahedron, in G4G12. With professor Banchoff we presented a similar transformation 
of the chiral icosahedral hinge elastegrity through folding giving rise to a continuum of pentagonal 
monododecahedra, until the decreasing side = 0, when the dodecahedron is transformed to rhombic.  

• When the dihedral angle expands to 180 ° the gate width is 0, the 2 bottom of the hinge vertices on either 
side of each gate become congruent, reducing the number of vertices from 12 to 6. Together with the 8 
right angle vertices of the orthogonal faces of the tetrahedra, the dodecahedron is a 14 vertex rhombic.   

From a physics point of view and applications (experimentally derived) 

• When the stiffness of a shape-memory membrane creates an elastegrity with the dihedral angles sagging  
below 90° (or when the structure starts contracted with 0° dihedral angles), a matrix of chiral icosahedral 
hinge elastegrities behaves as a tensile spring.  

• When the a shape-memory membrane is stiff and the 12 dihedral angles are greater than  90° (or start 
expanded to 180°), a matrix of chiral icosahedral hinge elastegrities acts as a compression spring. 
There are several possible applications for the Chiral Icosahedral Hinge Elastegrity cited in a footnote in 
the paper for G4G12, including a number of existing tensegrity applications that may be improved with 
the additional properties of hinge elastegrities and some novel applications specific to the additional 
unique properties of hinge elastegrities.  
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One of the applications proposed for tensegrities, is Donald Ingber’s, conjecture that all 
biological structure is hierarchically ordered tensegrities. Ingber is a founding director of 
the Wyss Institute for biological engineering and has been publishing on this topic for 
over 35 years. Ingber proposed a model of tensegrities where compression coil springs 
take the place of struts and tensile coil springs take the place of cables. This model can be  

Fig. 20 Ingber Model   also seen in his most recent publication Multi-scale modeling reveals use of hierarchical 
tensegrity principles at the molecular, multi-molecular, and cellular levels C. Reilly, D. Ingber, Extreme 
Mechanics Letters 20, (2018) 21. In this most recent article Ingber proposes a force and energy distribution  

 
 Fig.21          a. & b. dihedral angle>90o      b. dihedral angle<90o             c. NPR (Negative Poisson’s Ration gets narrower as it gets shorter) 
argument. Hinge elastegrities address several questions that tensegrities leave unanswered including 
accounting for the fact that numerous independent biological papers expressed astonishment in measuring 
experimentally NPR in different parts of the anatomy of various species, suggesting that Negative 
Poisson’s Ratio is ubiquitous in all of the architecture of life. For links to these articles please email to 
request. Additional elastegrities suggest the design of pumps for non-Newtonian fluids, that are prevalent 
in biological structure, and self-assemble into a structures at hierarchically different scales with smaller 
scale elastegrity components through folding a shape memory membrane.   
 
If you are interested to collaborate in investigating the force distribution and energy transmission of a 
matrix of Chiral Icosahedral Hinge Elastegrities fig.21 please conduct me at epavlides@RWU.edu. It may 
open the gate to numerous applications that you may be interested to develop collaboratively.  
 

 
Fig.22 Chiral Icosahedral Hinge Elastegrity contracting into an octahedron  

i Structurally both tensegrities and elastegrities are networks of rigid (linear struts for 
tensegrities, irregular tetrahedra for the icosahedral hinge elastegrity) and elastic (pre-stressed 
cables acting in pure tension for tensegrity and elastic hinges for elastegrities) 
ii	The term “hinge” differentiates elastegrities from those that may be termed “nodal”. Nodal 
elastegrities can be created by replacing tensegrity’s pre-stressed cables, holding together 
struts with springs. Additional hinge elastegrities have been created from further folding, 
weaving, and inverting the original icosahedron. One may consider elastegrities both “nodal” 
and “hinge” as the general family of structures that tensegrities are a special subcase	

                                                

 

  Left partially contracted dihedral hinge angle  
   Above  closed dihedral hinge angle 
   fully contracted into an octahedron 
   

expanded into an icosahedron 
dihedral angle = 90 o  


