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As any gardener can attest, ants love to congregate. They relentlessly gather
around crumbs, form robust trails, and carry out a variety of simple, coordi-
nated tasks that address the colony’s current needs. But how do they coordi-
nate when no single ant is in charge, their communication is limited, and the
necessary task may change depending on external conditions known only to
a select few? Somehow, ants seem to know exactly when a ripened piece of
fruit drops to the ground and, much to the gardener’s chagrin, waste no time
gathering in a coordinated feeding frenzy. On the other hand, once the food is
depleted or they are chased off by an angry gardener, they quickly disperse, all
simultaneously executing a new protocol to forage or to run for their lives.

While it is difficult to know exactly what clever ants can accomplish, or
how they coordinate so effectively, one can try to model ant-like behaviors
with dumbed down self-organizing particle systems, where particles, rather than
ants, interact via very rudimentary instructions. The question of what can be
computed in such a computationally limited, distributed setting is especially
compelling because many engineered, physical, and social sciences contain col-
lectives known to self-organize.

Gathering (or aggregation) is an illustrative example. How can a system of
homogeneous particles, with no global orientation or communication, be made
to aggregate, forming tight-knit communities, or disperse, the inverse action
where they spread out and explore? Aggregation and dispersion protocols are
found in many natural systems, such as fire ants gathering to form rafts [1]
and honey bees communicating foraging patterns by swarming closely within
their hives [4]. While each individual ant or bee lacks global knowledge of the
collective, it can take cues from its immediate neighbors to achieve global coor-
dination. Similarly, systems of heterogeneous (say, colored) particles can self-
organize into either separated (or segregated) and integrated states, depending
on what is most advantageous to the group based on external circumstances.
Examples of separation include molecules exhibiting attractive and repulsive
forces, strains of bacteria competing for resources while also collaborating to-



wards common goals [6, 7], and social insects acting belligerently or friendly
towards other colonies when threats are introduced or removed [5].

A goal for understanding collective behaviors is to find distributed, local
algorithms that, when run by each particle independently and concurrently,
result in emergent self-organization such as separation or integration of color
classes. In [2] and [3], we presented simple stochastic, distributed algorithms
that provably achieve aggregation/dispersion and separation/integration by ad-
justing just a couple of parameters slightly that control each particle’s affinity
for other nearest neighbors or nearest neighbors of the same color. Adjust-
ing these parameters causes the entire system to undergo a system-wide phase
change. Thus, each of these collective behaviors can be viewed as emergent
global outcomes of local interactions, much like phase transitions that turn wa-
ter into ice or spontancously magnetize a metal below critical temperatures.

Taking inspiration from these models of biological and physical systems, we
now ask what happens if the particles are even more particular about what
types of neighbors they prefer. Rather than simply preferring more neighbors,
or more like-colored neighbors, what if the particles strongly prefer to have
exactly 4 neighbors? What if they prefer 3 red and 3 blue neighbors? Should we
expect more phase changes where particles are disordered below some threshold
and begin to form long-range organization above some other threshold, much
as we see in many particle systems studied in statistical physics?

We explore such questions here with particles that are red or blue and
reside on some finite region of the triangular lattice (we add toroidal boundary
conditions by identifying left and right sides, as well as top and bottom sides,
of a large rhomboidal region so that every vertex on the lattice region has
exactly six neighbors). Each vertex is then occupied by a red or blue particle,
and particles can swap places, with each trying to find a location where its
neighbors have the color ratios they most prefer.

As expected, striking patterns emerge! This is not entirely surprising be-
cause we can view red and blue particles as species of ants, and if each prefer
six same colored neighbors to five, and five is favored over four, and so forth
then we are mimicking the separation algorithm that is known to gather the
particles of each color class together. We demonstrate that using other types of
neighbor-aware particles that favor exactly 3 neighbors sharing their color, or 4,
we can get striking patterns of global coordination. What is even more intrigu-
ing (to us!) is that the emergent patterns are highly dependent on the density
of red particles in the mixture. In addition to long-range order emerging when
local affinities are strong enough, we also find remarkable phase changes among
emergent patterns as the density is increased, with stripes morphing to polka
dots starting locally and spreading over the entire region. Here we demonstrate
this behavior with simulations and conjectures.



Neighbor-Aware Particles

Let’s imagine red and blue colored particles fully occupying all the vertices of a
region on the triangular lattice with sites and toroidal (or periodic) boundary
conditions. We call this region Gao = (V, E), where V are the vertices and F
are the edges. We are going to fix the proportion p = N,¢q/N of red particles,
where |V| = N = Nyeq + Npiye, the number of particles of each color. The
particles know their own color and the colors of each of their immediate six
neighbors, and each particle knows its homophily preference, i.e., what ratios of
like and unlike colors it prefers in its immediate neighborhood.

First, consider what the configurations will look like if we try to maximize
the number of particles that achieve their homophily preferences. As an exam-
ple, consider a region with p = .5 where all particles have homophily preference
of 2, so they want exactly 2 neighbors to have their color and the remaining
4 to have the other color. Figure 1.a shows one way that all vertices can si-
multaneously achieve this goal. Similarly, when p = .5 and each particle wants
3 neighbors of each color, then again each particle can satisfy its homophily
preference of 3, as shown in Figure 1.b. In Figure 1.c we see how to satisfy
every particle’s homophily preference when p = 0.5 and each particle favors 4
neighbors of its own color.

But the striped patterns shown in Figures 1.a, 1.b and 1.c only appear when
there are equal numbers of red and blue particles. As we start modifying the
density of each, we cannot always make every particle happy and some vertices
need to be “sacrificed” to help others. Figures 1.d, 1.e and 1.f show patterns
where the maximum number of particles achieving satisfy their homophily pref-
erences. Notice that in Figure 1.d when vertices want 4 like colored neighbors
and p = 0.25, the blue vertices all achieve optimal homophily but none of the
red vertices do. We say that this configuration has an efficiency & of 3/4 because
75% of the vertices satisfy their homophily preferences.

The last two examples in Figure 2 are for homophily preference 3. In Fig-
ure 2.e, p = 1/3 and the efficiency is £ = 2/3 (meaning a third of the particles
are red and the efficiency comes from the blue vertices, which all have the
desired three blue neighbors). In Figure 2.f, p = 6/13 and the efficiency is
¢ = 12/13 (since all vertices except for the centers of the blue hexagons have
the desired homophily preference). The first three examples in this figure all
achieve efficiency 1 since all vertices have their optimal homophily values.



(c) degree 4, p=10.5

(e) degree 3, p=1/3

Figure 1: Maximizing vertices with the desired degree at specified densities.

(b) degree 3, p=0.5

(d) degree 4, p =0.25

(f) degree 3, p=6/13



(b) degree 4, p = 0.25

(c) degree 2, p=10.5 . (d) degree 4, p =0.45

Figure 2: Simulations of the probabilistic model with various homophily pref-
erences and densities.

The Probabilistic Setting

A far more compelling situation arises when we define preferences in terms of a
probability distribution that, rather than trying to maximize the number of par-
ticles that achieve their homophily preferences, just makes such configurations
more likely. To do this, we define the weight of any particular configuration to
be the product of the individual particles’ satisfaction with the colors of their
neighbors. More precisely, fix Ag, A1, ..., Ag and for each i from 0 to 6, let A\; > 0
be the relative homophily values that a particle derives when exactly i of its
neighbors agree with its own color. Let €2 be the set of valid configurations, i.e.,
those with pN red vertices and N — pN blue vertices. For any configuration
o € Q, we define its weight as wt(o) = [[,cv As(v), Where s(v) is the number
of neighbors w of v such that o(v) = o(w) When we normalize this weight by
dividing by the sum of the weights of all possible configurations, we turn this



into a probability distribution:
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For a homophily preference of 4, for example, we may set Ay, > 1 and for
all ¢ # 4, we set A; = 1. Note that as Ay gets larger, the distribution starts
favoring configurations that have an increasing number of vertices with the
desired homophily values.

Figure 2.a shows what happens if we have homophily preference 4 and den-
sity p = 0.5. The orientation of the stripes that emerge can lie in any of three
directions and there will always be some defects throughout the pattern that
arise randomly. In Figure 2.b we show a homophily preference of 4 and density
p = 0.25. Here we see a grid-like pattern emerging. In Figure 2.c, we have ho-
mophily preference 2 with density p = 0.5. Lines similar to those in Figure 1.a
form, but the sporadic degree 3 vertices that arise in the probabilistic setting
can cause the lines to curve and wrap around.

In Figure 2.d we see something different. When p = 0.45, it is not possible to
have as many vertices fulfill their homophily preferences as when the density was
0.25 or 0.5. At such intermediate densities, the best one could do is to have part
of the region produce a “p = 0.25” type pattern and part produce a “p = 0.5”
type pattern. This is exactly what emerges when sampling configurations at this
intermediate density. Moreover, by nearly minimizing the boundary between
these two patterns, we reduce the number of vertices that fail to achieve either
nice pattern, and this is also what is observed in Figure 2.d.

We call configurations with patterns that fill the whole region pure, such
as Figures 2.a and 2.b, and configurations that show multiple patterns simul-
taneously mized, as in Figure 2.d. Note that since 0.45 is four-fifths the way
between 0.25 and 0.5, we expect to see about 4/5 of the region looking like a
pure pattern arising from p = 0.25 and 1/5 looking like the pattern arising from
p = 0.5. In other words, since there is no pure pattern occuring at p = 0.45, the
particle system compromises by optimally mixing the two closest pure patterns
in each direction.

Conjectures

Graphically, we can map out what happens for all p € [0,1] for homophily
preference 4 on a diagram. Recall that each “pure pattern” is associated with a



Figure 3: The emergent structures at various densities when we favor degree 4.
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Figure 4: Plot of the obtainable efficiency & vs density p for homophily prefer-
ence 4, with the five pure patterns.

specific density p, and a specific efficiency. We can plot these pure patterns on
a graph of efficiency vs density. There are five such pure patterns for homophily
preference 4, which we will first discuss since it represents the more common
situation. These are marked as crosses on Figure 4.

Homophily preference 4: For densities in between pure patterns for ho-
mophily preference 4, such as p = 0.45 as shown in Figure 2.d, a mixture of two
patterns is obtained. We expect the boundary between these patterns to have
length on the order O(v/N) between these patterns, where N is the number
of sites. This means that the efficiency of these non-pure configurations, when
averaged over the NN sites, is asymptotically equivalent to the interpolated ef-
ficiencies of the two pure patterns it lies between. Thus, in between the pure
patterns, we draw straight lines representing the optimal efficiency obtainable
at each density, as the number of sites go to infinity. The efficiencies on the
lines arise by mixing specific proportions of the two adjacent patterns.
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Figure 5: Plot of the obtainable efficiency & vs density p for homophily prefer-
ence 3, along with the seven pure patterns corresponding to the red points.

Homophily preference 3: An unusual situation occurs in the case of ho-
mophily preference 3, however. The pure patterns correspond to densities 0,
1/3,6/13, 1/2, 7/13, 2/3 and 1, with efficiencies 0, 2/3, 12/13, 1, 12/13, 2/3
and 0, respectively. Plotting these on a graph of efficiency vs density, we find
that the first four points and the last four points are collinear (see Figure 5).
The significance of this is that on densities p that do not coincide with pure
patterns, the interpolated efficiencies can be asymptotically achieved by a vari-
ety of mixtures of pure patterns. For example, at red particle density p = 0.25,
one simulation may yield a mixture of the patterns corresponding to efficiencies
0 and 6/13, while another may yield a mixture of the patterns corresponding
to efficiencies 1/3 and 1/2. This is in contrast to the homophily preference 4
case, where patterns an intermediate density will always be a mixture of pure
patterns immediately to the left and to the right on the plot. The mixed pat-
terns arising from homophily value 3 give rise to far less predictable, but very
intriguing, emergent behaviors.
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