

Numbers for Masochists: A Mental Factoring Cheat Sheet

by Richard Schroeppel and Hilarie Orman

Full paper at http://www.purplestreak.com/g4g13/mentalfactoring.pdf

Quick divisibility tests

2: low order digit of n is even. **3**: sum of the digits of n is divisible by 3.

5: low order digit is zero or 5. 7: if n = abc, then n modulo 7 is 2 * a + bc.

7, 11, and 13: *abcd* modulo 1001 is bcd - a.

11: For abc, if b = a + c or b + 11 = a + c, then abc = 11 * ac or 11 * zc where z = a - 1. 11|abcd iff a + c and b + d are equal or if the difference is 11. **13**: $n/300 = \{q, r\}$, 13|(q + r) iff 13|n.

37: If n has 3 digits, rotation preserves divisibility by 37.

97, 101, 103, ...: each $100 \pm n$ divides $10000 - n^2$.

Table 1: Useful and Memorable Multiples of Small Primes

	Column - high order digits, Row - units digit									
	1	3	7	9						
1	1001	299, 1001	102, 1003, 6001, 10013	399, 1007, 1501, 7999, 10013						
2		2001		2001						
3	992, 3999, 10013		111, 999							
4	10004	301, 3999, 10019	10011							
5		1007, 10017		1003, 20001						
6	10004		201							
7	994, 10011	511, 1022, 10001		1501, 3002						
8		996, 20003		801						
9			9991							
10	9999	9991	9951, 20009	981, 10028, 40003						
11		1017, 20001								
12			1016, 8001							
13			10001							
24	964, 20003									

The Method for Factoring n: Using Table 2, select the quadratic form(s) and the term that is divisible by 5 (NB: if there is no entry for n, use the 120 Method and/or Difference of Squares). Solve each form modulo 100 using the fact that one of the squares is a multiple of 25. For each form, there will be one or two solutions < 25, call them r (and s). The candidates for the non-multiple-of-5 term are the set $\{50i \pm r, 50i \pm s\}$ such that the square is less than n (or n/2 or n/3).

For each candidate value, plug in its square into the quadratic form and solve for the square of the other variable. If that solution is, indeed, a square, and if gcd(x,y) = 1, then the x and y values are a solution to the quadratic form.

If you find **two solutions**, the number is composite. Calculate the factors using vector addition/subtraction on the two solutions to minimize the result vector (u, v) and/or to have both terms divisible by 5. Divide both terms by gcd(u, v). Substitute u and v for x and y in the QF; the result will have a factor of n.

If all potential candidates less than the square root of n have been tried, and there is only **one solution**, then n is prime. If there are **no solutions**, n is composite; the factorization must be done with another method.

Example: 4469. Per table 2, we use the QF $x^2 + y^2$. Either $x^2 \equiv 0 \mod 100$ or $x^2 \equiv 25 \mod 100$. First assume 0 mod 100; then r = 13 because $13 * 13 \equiv 69 \mod 100$. The y candidates are $50j \pm 13$, and y < 70. Possibilities are 13, 37, and 63.

 $4469 - 13^2 = 4300$ which is not a square.

 $4469 - 37^2 = 4469 - 1369 = 3100$ which is not a square.

 $4469 - 63^2 = 4469 - 3969 = 500$ which is not a square. Therefore, $x^2 \equiv 0 \mod 100$ is impossible.

Now assume $x^2 \equiv 25 \mod 100$; find r such that $r^2 \equiv 69 - 25 \mod 100 = 44$. That would be 12. The y candidates are $50j \pm 12$, y < 70: 12, 38, and 62.

 $4469 - 12^2 = 4325$ which is not a square because the hundreds digit is odd.

 $4469 - 38^2 = 4469 - 1444 = 3025 = 55^2$. This is a representation of 4469 as $55^2 + 38^2$.

 $4469 - 62^2 = 4469 - 3844 = 625 = 25^2$.

Table 2: Properties of quadratic form terms

residue	low digit	quadratic form	5 divides	x parity	y parity	$r^2 \mod 100$
1 mod 4 1 mod 4	1 or 9 3 or 7	$n = x^2 + y^2$ $2n = x^2 + y^2$	either either	either odd	1-p(x) odd	$n, n-25 \\ n-25$
3 mod 8 3 mod 8	1 or 9 3 or 7	$n = x^{2} + 2y^{2}$ $3n = x^{2} + 2y^{2}$ $n = x^{2} + 2y^{2}$ $3n = x^{2} + 2y^{2}$	y x x y	odd odd odd odd	odd even odd even	n - 50 (3n - 25)/2 (n - 25)/2 3n
7 mod 24 7 mod 24	1 or 9 3 or 7	$n = x^{2} + 3y^{2}$ $4n = x^{2} + 3y^{2}$ $n = x^{2} + 3y^{2}$ $4n = x^{2} + 3y^{2}$	y y x x	even odd even odd	odd odd odd odd	n - 75 $4n - 75$ $n/3$ $(4n - 25)/3$

Add the two representations (55,38) and (25,62) to get (80,100). The gcd is 20, dividing it out yields (4,5), $4^2 + 5^2 = 41$. By mental arithmetic, 4469/41 = 109.

Filters. $n \equiv x^2 + y^2 \mod 3$. The squares modulo 3 are 0 and 1, the corresponding square roots are 0, ± 1 . Let m be the residue of n modulo 3. List all solutions to $m \equiv u^2 + v^2 \mod 3$ using 0 and 1 for u^2 and v^2 . When trying an x or y candidate, check that it is consistent with the solution set modulo 3. If it isn't, discard it. You can do the same thing modulo 9 (squares are 0, 1, 4, and 7), modulo 7 (squares are 0, 1, 2, and 4), or modulo 49 (squares are 0, $7j + \{1, 2, 4\}$).

Modulo 100 filters. Match the parity of the hundreds digits in n and the square of a candidate value. If y is an odd multiple of 5 and the QF is $x^2 + 2y^2$, use the pattern of thousands-hundreds digits. If the QF is $x^2 + 3y^2$ and the tens digit of n is odd, match the parity of the hundreds digit of n - 25 or n - 75 to the parity of the hundreds digit of the candidate.

Example: $1000009 = 1000^2 + 3^2$. From Table 2, $y^2 \mod 100$ is either 00 or 25.

 $09 - 00 = 9 = x^2 \mod 100 \rightarrow r = 3$, and $09 - 25 = 84 = x^2 \mod 100 \rightarrow r = 22$, so the x candidates are 50 + 3, 50 - 3, 50 - 22, 50 + 22, ...; 50 ± 22 is modified to 100 ± 28 to match hundred's digit parity. Squares modulo 9 eliminate 997; squares modulo 7 and modulo 9 accept 972. $1000009 - 972^2 = 55225 = 235^2$. Combine (1000, 3) with (235, 972) to get factors 293 and 3413.

The 120 Method. Find solutions to $kn = ax^2 + by^2$ where k, a, and b are small. For each solution, add -ab to the set Q and compute the closure of Q under multiplication, exact division, and division by a square.

For a 4i + 3 number, if 2, 3, and 5 (irrespective of sign) are in Q, n can be factored or proved prime. For a 4i + 1 number, if -1, 2, 3, and 5 are in Q, n can be factored or proved prime.

The trial divisors of n for a 4i+3 number: $120j+\{1,49,d,e\}$ where $d=n \mod 120$, $e=60-11d \mod 120$ and j goes from 0 to $\sqrt{n}/120$; for a 4i+1 number: $120j+\{1,49\}$ where j goes from 0 to $\sqrt{n}/120$. Only prime divisors need be tested.

Example 2503: $n = 50^2 + 3 = 51^2 - 98 = 15 * 13^2 - 32$. The corresponding -ab values are -3, 2, 30. By closure, $Q = \{2, 3, 30, 15, 5\}$. Then d = 103, e = 7; trial divisors are $120j + \{1, 7, 49, 103\}$. Testing 7 fails, 49 is composite, $103 > \sqrt{n}$. Therefore n is prime.

The Difference of Squares Method. Find x and y such that $n = x^2 - y^2$. One of the two squares will end in 00 or 25. Solve for the other square modulo 100 using the following equations.

For $n \equiv 1 \mod 4$:

 $x \equiv 5 \mod 10, \, y^2 \equiv 25 - n \mod 100$

 $y \equiv 0 \mod 10, x^2 \equiv n + 0 \mod 100$

For $n \equiv 3 \mod 4$:

 $x \equiv 0 \mod 10, \ y^2 \equiv 0 - n \mod 100$

 $y \equiv 5 \mod 10, x^2 \equiv n + 25 \mod 100$

Of the two solutions, one is based on x, the other on y. Use the solutions to build candidate sets of the form $\{50j \pm r\}$ as in The Method; one is for x candidates, the other is for y candidates. Alternate trying x candidates and y candidates, then change the limits for x and y as described next. If x and y both exceed their limits, then n is prime.

Limits for x and y. Use divisibility tricks to eliminate possible divisors up to L = 37. Call the upper limit for x L_x . $L_x = (L + n/L)/2$; the upper limit for y is $L_x - L$. To change the limits, use mental arithmetic to test more primes in sequence, set L to the last prime tested, and recompute the limits. Divisor restrictions (see full paper) can eliminate some primes without testing.