Numbers for Masochists: A Mental Factoring Cheat Sheet

by Richard Schroeppel and Hilarie Orman
Full paper at http://www.purplestreak.com/g4g13/mentalfactoring.pdf

Quick divisibility tests
2: low order digit of n is even. 3: sum of the digits of n is divisible by 3 .
5: low order digit is zero or 5. 7: if $n=a b c$, then n modulo 7 is $2 * a+b c$.
7, 11, and 13: $a b c d$ modulo 1001 is $b c d-a$.
11: For $a b c$, if $b=a+c$ or $b+11=a+c$, then $a b c=11 * a c$ or $11 * z c$ where $z=a-1.11 \mid a b c d$ iff $a+c$ and $b+d$ are equal or if the difference is 11. 13: $n / 300=\{q, r\}, 13 \mid(q+r)$ iff $13 \mid n$.
37: If n has 3 digits, rotation preserves divisibility by 37 .
97, 101, 103, ... each $100 \pm n$ divides $10000-n^{2}$.

Table 1: Useful and Memorable Multiples of Small Primes

	Column - high order digits, Row - units digit			
	1	3	7	9
1	1001	299,1001	$102,1003,6001,10013$	$399,1007,1501,7999,10013$
2		2001		
3	$992,3999,10013$		111,999	
4	10004	$301,3999,10019$	10011	
5		1007,10017		
6	10004		201	1003,20001
7	994,10011	$511,1022,10001$		
8		996,20003		1501,3002
9			9991	9951,20009
10	9999	1017,20001		801
11			1016,8001	
12			10001	
13				
24	964,20003			

The Method for Factoring n : Using Table 2, select the quadratic form(s) and the term that is divisible by 5 (NB: if there is no entry for n, use the 120 Method and/or Difference of Squares). Solve each form modulo 100 using the fact that one of the squares is a multiple of 25 . For each form, there will be one or two solutions <25, call them r (and s). The candidates for the non-multiple-of- 5 term are the set $\{50 i \pm r, 50 i \pm s\}$ such that the square is less than n (or $n / 2$ or $n / 3$).

For each candidate value, plug in its square into the quadratic form and solve for the square of the other variable. If that solution is, indeed, a square, and if $\operatorname{gcd}(x, y)=1$, then the x and y values are a solution to the quadratic form.

If you find two solutions, the number is composite. Calculate the factors using vector addition/subtraction on the two solutions to minimize the result vector (u, v) and/or to have both terms divisible by 5 . Divide both terms by $\operatorname{gcd}(u, v)$. Substitute u and v for x and y in the QF; the result will have a factor of n.

If all potential candidates less than the square root of n have been tried, and there is only one solution, then n is prime. If there are no solutions, n is composite; the factorization must be done with another method.
Example: 4469. Per table 2, we use the QF $x^{2}+y^{2}$. Either $x^{2} \equiv 0 \bmod 100$ or $x^{2} \equiv 25 \bmod 100$. First assume 0 $\bmod 100$; then $r=13$ because $13 * 13 \equiv 69 \bmod 100$. The y candidates are $50 j \pm 13$, and $y<70$. Possibilities are 13,37 , and 63.
$4469-13^{2}=4300$ which is not a square.
$4469-37^{2}=4469-1369=3100$ which is not a square.
$4469-63^{2}=4469-3969=500$ which is not a square. Therefore, $x^{2} \equiv 0 \bmod 100$ is impossible.
Now assume $x^{2} \equiv 25 \bmod 100$; find r such that $r^{2} \equiv 69-25 \bmod 100=44$. That would be 12 . The y candidates are $50 j \pm 12, y<70: 12,38$, and 62 .
$4469-12^{2}=4325$ which is not a square because the hundreds digit is odd.
$4469-38^{2}=4469-1444=3025=55^{2}$. This is a representation of 4469 as $55^{2}+38^{2}$.
$4469-62^{2}=4469-3844=625=25^{2}$.

Table 2: Properties of quadratic form terms

residue	low digit	quadratic form	5 divides	x parity	y parity	$r^{2} \bmod 100$
$\begin{aligned} & 1 \bmod 4 \\ & 1 \bmod 4 \end{aligned}$	$\begin{aligned} & 1 \text { or } 9 \\ & 3 \text { or } 7 \end{aligned}$	$\begin{gathered} n=x^{2}+y^{2} \\ 2 n=x^{2}+y^{2} \end{gathered}$	either either	either odd	$\begin{gathered} 1-\mathrm{p}(\mathrm{x}) \\ \text { odd } \end{gathered}$	$\begin{gathered} n, n-25 \\ n-25 \end{gathered}$
$3 \bmod 8$ $3 \bmod 8$	$1 \text { or } 9$ 3 or 7	$\begin{gathered} n=x^{2}+2 y^{2} \\ 3 n=x^{2}+2 y^{2} \\ n=x^{2}+2 y^{2} \\ 3 n=x^{2}+2 y^{2} \end{gathered}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{y} \end{aligned}$	odd odd odd odd	odd even odd even	$\begin{gathered} n-50 \\ (3 n-25) / 2 \\ (n-25) / 2 \\ 3 n \end{gathered}$
$7 \bmod 24$ $7 \bmod 24$	$1 \text { or } 9$ 3 or 7	$\begin{gathered} n=x^{2}+3 y^{2} \\ 4 n=x^{2}+3 y^{2} \\ n=x^{2}+3 y^{2} \\ 4 n=x^{2}+3 y^{2} \end{gathered}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{y} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	even odd even odd	odd odd odd odd	$\begin{gathered} n-75 \\ 4 n-75 \\ n / 3 \\ (4 n-25) / 3 \end{gathered}$

Add the two representations $(55,38)$ and $(25,62)$ to get $(80,100)$. The gcd is 20 , dividing it out yields $(4,5)$, $4^{2}+5^{2}=41$. By mental arithmetic, $4469 / 41=109$.

Filters. $n \equiv x^{2}+y^{2} \bmod 3$. The squares modulo 3 are 0 and 1 , the corresponding square roots are $0, \pm 1$. Let m be the residue of n modulo 3 . List all solutions to $m \equiv u^{2}+v^{2} \bmod 3$ using 0 and 1 for u^{2} and v^{2}. When trying an x or y candidate, check that it is consistent with the solution set modulo 3 . If it isn't, discard it. You can do the same thing modulo 9 (squares are $0,1,4$, and 7), modulo 7 (squares are $0,1,2$, and 4), or modulo 49 (squares are $0,7 j+\{1,2,4\})$.

Modulo 100 filters. Match the parity of the hundreds digits in n and the square of a candidate value. If y is an odd multiple of 5 and the QF is $x^{2}+2 y^{2}$, use the pattern of thousands-hundreds digits. If the QF is $x^{2}+3 y^{2}$ and the tens digit of n is odd, match the parity of the hundreds digit of $n-25$ or $n-75$ to the parity of the hundreds digit of the candidate.

Example: $1000009=1000^{2}+3^{2}$. From Table $2, y^{2} \bmod 100$ is either 00 or 25. $09-00=9=x^{2} \bmod 100 \rightarrow r=3$, and $09-25=84=x^{2} \bmod 100 \rightarrow r=22$, so the x candidates are $50+3$, $50-3,50-22,50+22, \ldots ; 50 \pm 22$ is modified to 100 ± 28 to match hundred's digit parity. Squares modulo 9 eliminate 997; squares modulo 7 and modulo 9 accept 972 . $1000009-972^{2}=55225=235^{2}$. Combine (1000,3) with $(235,972)$ to get factors 293 and 3413.

The 120 Method. Find solutions to $k n=a x^{2}+b y^{2}$ where k, a, and b are small. For each solution, add $-a b$ to the set Q and compute the closure of Q under multiplication, exact division, and division by a square.
For a $4 i+3$ number, if 2,3 , and 5 (irrespective of sign) are in Q, n can be factored or proved prime. For a $4 i+1$ number, if $-1,2,3$, and 5 are in Q, n can be factored or proved prime.
The trial divisors of n for a $4 i+3$ number: $120 j+\{1,49, d, e\}$ where $d=n \bmod 120, e=60-11 d \bmod 120$ and j goes from 0 to $\sqrt{n} / 120$; for a $4 i+1$ number: $120 j+\{1,49\}$ where j goes from 0 to $\sqrt{n} / 120$. Only prime divisors need be tested.

Example 2503: $n=50^{2}+3=51^{2}-98=15 * 13^{2}-32$. The corresponding $-a b$ values are $-3,2,30$. By closure, $Q=\{2,3,30,15,5\}$. Then $d=103, e=7$; trial divisors are $120 j+\{1,7,49,103\}$. Testing 7 fails, 49 is composite, $103>\sqrt{n}$. Therefore n is prime.

The Difference of Squares Method. Find x and y such that $n=x^{2}-y^{2}$. One of the two squares will end in 00 or 25 . Solve for the other square modulo 100 using the following equations.
For $n \equiv 1 \bmod 4$:
$x \equiv 5 \bmod 10, y^{2} \equiv 25-n \bmod 100$
$y \equiv 0 \bmod 10, x^{2} \equiv n+0 \bmod 100$
For $n \equiv 3 \bmod 4$:
$x \equiv 0 \bmod 10, y^{2} \equiv 0-n \bmod 100$
$y \equiv 5 \bmod 10, x^{2} \equiv n+25 \bmod 100$
Of the two solutions, one is based on x, the other on y. Use the solutions to build candidate sets of the form $\{50 j \pm r\}$ as in The Method; one is for x candidates, the other is for y candidates. Alternate trying x candidates and y candidates, then change the limits for x and y as described next. If x and y both exceed their limits, then n is prime.

Limits for x and y. Use divisibility tricks to eliminate possible divisors up to $L=37$. Call the upper limit for x $L_{x} . L_{x}=(L+n / L) / 2$; the upper limit for y is $L_{x}-L$. To change the limits, use mental arithmetic to test more primes in sequence, set L to the last prime tested, and recompute the limits. Divisor restrictions (see full paper) can eliminate some primes without testing.

