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Abstract: 20 years ago Dániel Erdély asked me to visualize the behavior of his invention, the 
(hexagonal) Spidron1, a shape that tiles the plane, and is composed of an infinite number of 
increasingly small triangles. The Spidron System can be twisted up to form a periodic 3D landscape,
without distorting its triangles. To visualize this, I needed to derive the equations, or formulas, that 
describe the transformation. This paper presents the derivation of three of the most important 
formulas, according to the way I followed. Later others (L Szilassi and M Hujter) used different 
approaches and achieved equivalent versions of the main formula presented here.

1. About the hexagonal Spidron System
A single Spidron is an S shaped form composed of an infinite number of increasingly small 
triangles (see Figure 1, which has three adjacent S-shapes in the middle). The two end 
points of the S shape are the points of convergence for the ever-shrinking triangles.

If we cut the S-shape in two, we get the so-called Semi-Spidron (shaded in Figure 2), 
which has only one point of convergence. There are two types of triangles in it: isosceles 
and equilateral ones; they follow each other in an alternating way as they converge. We 
can place six of these Semi-Spidrons next to each other, to get a regular hexagon. They 
share their points of convergence at the hexagon’s center. Since the hexagon tiles the 
plane, the Semi-Spidron and the S-shape tile it too, creating a Spidron System. Figure 1 
shows three adjacent hexagons from the system.

Figure 1 Figure 2

A whole hexagon is called a Spidron-nest. In the context of a Spidron-nest, a Semi-Spidron 
is also called a Spidron-arm. The cluster of triangles that form a circle (highlighted with 
thick black lines in Figure 2) is called a Spidron-ring (or belt).

1 SpidronTM is currently (June, 2018) a registered trade mark.
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1.2 Flexibility
The hexagonal Spidron System has the ability to transform so that the shape of its 
triangles doesn’t change. During this transformation it twists up into a periodic 3D 
landscape, or relief (Figure 3). This paper analyzes this phenomenon, by looking for the 
right formula, or formulas, that describe the transformation.

Figure 3

For further introduction to the Spidron see [1] and [2].

2. The First Formula
Let’s start with the planar state of the system. Select three, mutually adjacent Spidron-
nests, and concentrate on the junction point where 3 diamonds meet (highlighted on 
Figure 4).

Figure 4 

Each diamond is a pair of adjacent isosceles triangles that belong to adjacent Spidron-
nests. We assume that the adjacent triangles in each pair move together, continuing to 
form rigid diamonds. This is a valid assumption, leading to a valid realization of the 
Spidron-transformation.
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2.2 Leaving the plane
Let’s assume that the junction point is going upwards, and the diamonds’ far ends are 
going downwards. In terms of rotations, each diamond is getting inclined with the same α 
angle around axes parallel to their shorter diagonals (see Figure 5a).

α corresponds to the inclination angle of the hexagon’s edges at the perimeter of the 
Spidron-nest (the lower-left one from Figure 4, but this applies to others in the system 
too2), relative to original plane. This is our independent variable. We would like to choose it
freely, at least within reasonable limits. 

Remember that the marked segment must retain its (say, unit) length, as there are 
triangles on both of its sides, which we only hid for the illustration.

a b c

Figure 5

If nothing else happens, the segment cannot retain its length, it breaks (Figure 5b). But if 
we allow the diamonds to turn around their (now inclined) longer axes, with the same φ 
angle for each one (where the direction of the 3 rotations is symmetric, or coherent, in a 
circular fashion), the length of the segment can be maintained (Figure 5c).

This φ can, and must, be chosen well. If we manage to find a suitable value (or formula, 
which depends on α), the shape of the triangles in the outermost Spidron-ring will be 
preserved. The question is: what is this φ?

2 Sometimes I speak of a single Spidron-nest only, due the fact that the same thing happens to 
every Spidron-nest in the system.
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2.3 Formalizing 
Let’s label one end of the above segment with A, and the other with B (Figure 6). Their 
coordinates are shown. In the figure, the X and Y axes lay in the plane of the image, as 
indicated, and the Z axis is perpendicular to that, pointing outwards.

Figure 6

We state that no matter what happens to the original A and B points, the distance of their 
transformed counterparts (A’ and B’) must always be 1:

This is our main equation.

We are going to apply various rotations to the vectors around the X, Y and Z axes, by 
multiplying them with these known rotation matrices from the left:

Let’s express the transformed A’ (see Figure 6). The original A vector is first tilted by φ 

positive value). In the formula, these rotations follow each from right to left:
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The transformed B’ is expressed very similarly, but we temporarily align its diamond with 
the Y axis first, by applying a rotation around Z (see Figure 7). This way we won’t need to
perform rotations around oblique axes. 

Figure 7 Figure 8

This correction and back-correction is valid, and doesn’t interfere with the result. The Z-
heading of the diamonds doesn’t change when the Spidron transforms. In other words, if 
we project the diamonds’ longer diagonals on the original plane (the plane of the image), 
the direction of the projections don’t change during the transformation (they only get 
shorter). And after the previous back-correction, we too get back the original Z-heading of 
B’s diamond.

So we first apply the aligning rotation (-30° around Z), then we tilt the aligned B* by φ 
around the Y axis, and then rotate it with α around the X axis. Finally, we compensate the 
previous alignment applying a rotation by 30° around Z:

 

But before going on, let’s apply one more alignment, this time a permanent one. Let’s 
rotate the whole system with 30° around Z, thus aligning AB with the X axis (Figure 8). 
This will make one of our immediate results (6) simpler (and more useful too). Because of 
this alignment, A’ gets an additional rotation, and the back-correcting rotation of B’ 
changes from 30° to 60°: 

These are the final formulas for A’ and B’.
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Below is the A’B’ vector (or, to be more precise, B’A’ vector):

And the following is the A’B’ vector's length. We want to make sure that it is 1, complying 
with our main equation (1):

 

If we solve this equation, φ can be expressed as a function of α like this (there are more 
than one solutions, but they seem to be equivalent3 apart from differences in sign, which 
mean that the direction of the tilting can be reversed):

To achieve this formula, 20 years ago (in 1998) I used a program called Derive, and it 
needed some help from me. This year I used the Wolfram Language, and it solved the 
equation on its own.  

Using this formula for φ ensures that the AB segment keeps its length, and the triangles in
the outermost Spidron-ring don't get distorted, if we set our independent α variable to any
arbitrary, reasonable value. This is the first formula.

2.4 Generalizing the angles to inner rings
You may ask: What about other, inner Spidron-rings? The above formula works for any 
Spidron-ring in the Spidron-nest, if we interpret it properly (we need somewhat new 
definitions now, which don’t involve diamonds4): it gives the rotation angle of the ring’s 
isosceles triangles around their longest edges (i.e. their bases), in the function of the 
inclination angle of these base edges relative to the original plane. These base edges are 
the hexagon’s edges at the outer perimeter of the Spidron-ring we are currently 
examining.

3 My main goal was to get a working visualization, and, apart from a few numerical tests, I didn’t 
perform thorough mathematical analysis.

4 In fact we could have operated with isosceles triangles (instead of diamonds) in the first place, 
concentrating on one single Spidron-nest only, but I found the idea of the junction point more 
intuitive because it captures more of the symmetry.
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3. The Second Formula
At the end of the previous section we generalized α and φ. Let’s focus more on α and its 
generalization. Our independent variable is called α. This is the inclination angle of the 
hexagon’s edges at the outer perimeter of the outermost Spidron-ring (the Spidron-nest 
itself). There is an angle analogous to this at the outer perimeter of the second-outermost 
Spidron-ring5. We may call it α2 (see Figure 9). What we are looking for now, is a formula 
that gives α2 in the function α.

Figure 9

Since the Z coordinate of the A’B’ vector (in equation (6)) represents the height-difference 
that B’ gains over A’, if we take the arcus sinus of this Z coordinate, we get the inclination 
angle of the unit-length A’B’ vector relative to the XY plane, which is exactly what we are 
looking for. After substituting (7) in the place of φ, we get this for α2:

In fact, this formula is valid for any consecutive pair of αn+1 and αn, so it provides a 
recursive solution to the series of αn’s. In other words, it gives the connection between the 
inclination angle of the hexagon’s edges at the outer perimeter of a Spidron-ring, and the 
similarly defined angle at the inner perimeter of that ring. This is the second formula in my
paper, and is generally considered to be the main Spidron Formula.

In 2004, Prof. Lajos Szilassi presented an independent derivation [3], which led to a 
formula equivalent to (8). 

In June 2018, Mihály Hujter, PhD, described a different derivation [4], again leading to a 
formula which is equivalent to (8). Its English version is yet to be published at the time of 
writing this manuscript.

5 Which happens to be the inner perimeter of the outermost ring.
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Another important angle is the amount the second-outermost Spidron-ring turns around Z, 
relative to the Spidron-nest it belongs to, whose orientation we consider to be fixed. 

Figure 10

This is where aligning the original AB segment to the X axis becomes useful (Figure 10). 
It is now easy to read this angle (which I named γ) from the coordinates of the A’B’ vector 
(6). We just have to take the arcus tangent of the ratio of its Y and X coordinates, and get:

This angle too can be generalized to inner Spidron-rings.
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