
Some Toroidal (and Non-toroidal) Rearrangement Puzzles

Barry A. Cipra
bcipra@rconnect.com

In 1998 I came across an etching by American artist Sol LeWitt 
titled “Straight Lines in Four Directions and All Their Possible 
Combinations,” in an exhibit catalog I found in a used bookstore 
on a trip to Norman, Oklahoma. (I was there for a conference on 
tornado forecasting.) The picture, redrawn below, is relatively 
straightforward: Each of the sixteen squares in a 4x4 array 
either does or doesn’t have a horizontal, vertical, up diagonal 
or down diagonal line segment drawn in it. 

	 	 	
Figure 1: The Sol LeWitt puzzle: 16 squares with all 
combinations of lines in horizontal, vertical, up-diagonal and 
down-diagonal directions.



LeWitt arranges the four singlets across the top row, the six 
doublets across the next row and a half, the four triplets after 
that, then the square with line segments in all four directions, 
and finally the “empty” square with nothing at all in it. 
(Actually, LeWitt’s version does not include the empty square; 
in the book where I first saw the etching, the title appears 
there.) LeWitt’s arrangement also draws horizontal lines first, 
then verticals, then up diagonals, then down diagonals, e.g., 
the first three doublets are h-v, h-u, and h-d, followed by v-u 
and v-d, and ending with u-d. I call this kind of systematic 
approach to laying things out a “Sol LeWitt” arrangement.

My eye (more precisely, my brain…) noticed that some lines 
continue from one square to another, but rarely all the way 
across; only a few diagonals make it all the way from one outer 
edge of the array to another outer edge. This made me wonder: 
Could the sixteen squares be rearranged, without rotating any of 
them, into some different 4x4 array so that all lines *do* 
continue all the way from outer edge to outer edge?

It turns out they can. Not only that, but the solutions have a 
rather remarkable property: If you move the top row of squares 
to the bottom, or the left column to the right, you still have a 
solution. That is, the solutions are all “toroidal” - there's a 
wrap-around effect, as if the squares were drawn on a donut.

It isn’t surprising — it’s obvious, in fact - that the 
horizontal and vertical lines in a solution behave toroidally, 
but it is a surprise that the diagonals do as well; there’s 
nothing in the question itself that requires it. I eventually 
wrote this up for an earlier Gathering for Gardner; that paper 



was published in *Puzzler’s Tribute: A Feast for the Mind* (pp. 
387-393).

I’ve tried since to come up with other, similar puzzles whose 
solutions all have the same toroidal property. So far my efforts 
have all failed. My first effort appeared in the aforementioned 
*Puzzler’s Tribute* paper:

	 	 	
Figure 2: A “Circle” LeWitt puzzle, with quarter circles drawn 
or not drawn, centered at the four corners of each square. 

The design criterion here is that each square either has or 
doesn’t have a quarter circle centered at each of its four 
corners, and the problem is to rearrange the given 4x4 array of 
squares, sans rotations, so that each arc continues from square 
to square.  There are 32 quarter circles in all, so a toroidal 
solution will have 8 complete circles (some of which appear as 
pairs of semicircles on opposite sides of the array). This 
puzzle does have toroidal solutions, but it also has solutions 
that are non-toroidal, so in that sense it’s a failure.



I later tried a variant I called the “Sine" LeWitt problem: 
Along each edge of each square, either do or don’t draw a half 
period of a sine wave, and then try to rearrange the squares, 
again without rotations, so that you get sets of sine curves 
running from left to right and top to bottom. (Note, there’s not 
much difference, visually, between a half sine wave and a 
quarter circle, especially when they’re hand drawn. This opens 
the possibility for an alternative puzzle in which the goal is 
to arrange the squares so that each quarter circle is part of a 
complete circle.)

	 	 	
Figure 3: The “Sine" LeWitt puzzle.

But like the Circle LeWitt puzzle, Sine LeWitt has both toroidal 
and non-toroidal solutions, so it’s another failure.

Before I go on, a word about rotations: I self-imposed the non-
rotation rule mainly to keep the sixteen squares all different. 
If, for example, you rotate the Sol LeWitt square with a single 



up diagonal by a quarter turn, it becomes a duplicate of the 
down-diagonal square. (Some squares, of course, don’t change if 
you rotate them by a quarter turn, and all squares are invariant 
under half turns.) I usually label the squares in my designs in 
a way that subtly discourages rotations. But if you want to 
rotate pieces, go right ahead. Just know, it’s a somewhat 
different problem then. In particular, if you allow rotations, 
the original Sol LeWitt problem has additional solutions that 
are *not* toroidal.

Recently, in 2019, I decided to turn the whole problem on its 
head, and designed a set of sixteen different squares for which 
no matter how you arrange them, you get continuity from square 
to square, with toroidality understood to occur at the outer 
edges:

	 	

   
   



Figure 4: A toroidal looping puzzle, with labels to discourage 
rotation of squares, in “Sol LeWitt” order, with single-crossing 
squares first, then two-crossing squares, etc.. (Figure courtesy 
of Donna Dietz — see http://www.donnadietz.com/cipra/
CipraPuzzle.html for a playable version of the puzzle.)

Each square has four arcs in it, with each arc connecting two 
“thridpoints” (an invented term for midpoints that divide an 
interval into thirds) of adjacent edges; the key rule that 
limits the number of different patterns to 16 is that the two 
arcs emanating from the thridpoints on each edge must connect to 
thridpoints on *opposite* edges. The four-bit label in each 
square specifies whether the two arcs emanating from the 
thridpoints of the left, top, right, and bottom sides of the 
square, in that order, do or do not cross, with “1” if they do 
and “0” if they don’t. One of the labels’ roles is to discourage 
rotation, but you are, as before, welcome to refuse to be 
discouraged, and rotate to your heart’s content.

A note about “thridpoints”:  It’s a purely aesthetic choice to 
divide each side of the squares into thirds; any two points on 
each pair of sides will do; the important thing is that arcs 
continue from one square to the next. Indeed, one way to 
discourage rotations would be to choose “thridpoints” 
asymmetrically, so that continuations would be disrupted if any 
of the squares were rotated. It’s also an aesthetic choice to 
use quarter circles and quarter ellipses for the arcs; the 
essential property is continuity, not smoothness. An interesting 
question to ponder is whether aesthetic choices enhance the 
process of mathematical discovery or restrict it — or both!



It occurred to me later to incorporate a consistent rule for 
passing one arc over another wherever there’s a crossing, which 
makes the set of squares, if you “fatten” the arcs so they look 
like stretches of string, look like this:

	
Figure 5: Toroidal looping puzzle “fattened” into over- and 
under-passes, arranged in "binary" fashion, with labels ordered 
from 0000=0 to 1111=15. (Photo courtesy of Pete Benson at 
CherryArborDesign.com - the puzzle can be purchased there.)

One pleasant surprise here is that, no matter how you rearrange 
the squares — and even if you allow rotations — the sequence of 



over- and under-crossings always alternates. Experts in knot 
theory undoubtedly see this as obvious; the rest of us can be 
content to scratch our heads or work out an ad-hoc proof.

I debuted this puzzle at the 2019 MOVES conference at the 
National Museum of Mathematics in New York, without specifying 
the particular puzzle I had in mind for the pieces.  You might 
notice I haven’t done so here either (yet). I did so in part to 
see what ideas others would come up with for what could be done 
with the pattern. I invite readers to pause at this point and 
think for themselves of something interesting to do with the 
pieces. (At MOVES I did not even hint that the pattern should be 
cut into separate squares; some people came up with the idea of 
cutting, but along the *arcs*, like a jigsaw puzzle.)

One person at MOVES (I’m sorry, I don’t remember who it was) 
observed that the pieces looked like “Tsuro” tiles, named after 
a popular board game of relatively recent vintage. Tsuro tiles 
also connect the “thridpoints” on the four sides of a sqare, and 
some of them are identical with the tiles in my puzzle, but 
others are not. I’m not sure what rule (if any) governs the set 
of Tsuro tiles; as mentioned above, I chose a rule that produces 
exactly 16 different patterns.

So here’s the challenge I had in mind when I invented the 
puzzle: Can you rearrange the tiles so that there is exactly one 
loop that runs through all the arcs of all the squares?

Since each tile has four arcs, there are 64 arcs in all.  It’s 
convenient to talk about the “length” of a loop as the number of 
separate arcs it consists of. If you patiently count them, you 
will find that the “binary” arrangement in Figure 5 has four 



loops, each of length 16. The “Sol LeWitt” arrangement in Figure 
4 has a pair of loops of length 4 that are fairly easy to spot; 
the rest of its arcs belong to two loops, each of length 28.

	
Figure 6. Two loops, each of “length” 16, in the “binary” 
arrangement from Figure 5. (Note, the arcs here are poorly drawn 
quarter circles and ellipses, as evident from a careful look at 
the bottom rightmost tile.)

Notice that all those loop lengths are multiples of 4. It’s not 
hard to see that loop lengths must be even; a two-color 
checkerboard proof does the trick: Each loop passes back and 
forth between black and white squares. To show the number of 
arcs is a multiple of 4, use a four-coloring of 2x2 patches, say 
rows of alternating Red/Blue alternating with rows of 
alternating Green/Yellow (hence columns of alternating Red/Green 
alternating with columns of alternating Blue/Yellow). If, in 
following a loop, you pass from Red to Blue, you’ll next pass 
from Blue to Yellow no matter which way you turn (up or down), 
then from Yellow to Green, then from Green back to Red, after 



which you’ll wind up repeating the color sequence again and 
again.

Peter Winkler took an interest in the puzzle at MOVES; by the 
end of the afternoon he had a proof that a single, 64-arc loop 
is impossible. A key observation was that all attempts finding a 
one-loop arrangement invariably left an *even* number of loops. 
What Peter finally proved was that, no matter what set of tiles 
you use (i.e., let each square be any tile, even if you repeat 
some tile patterns multiple times and not use others at all), 
the parity of the number of loops is equal to the parity of the 
number of 1’s in the tiles’ labels. Donna Dietz, who was also at 
the MOVES conference, wrote up Peter’s proof, along with other 
observations the three of us made, in a paper posted on the 
ArXiv: https://arxiv.org/abs/1908.05718 .  She also posted a 
playable version of the puzzle on her website, as noted in 
Figure 4. (Clicking on any two squares there interchanges them, 
so you can move pieces wherever you want.)

Peter’s proof works for any even-by-even array of my tile 
patterns; it doesn’t work if one of the dimensions is odd.

Jim Propp, another MOVES attendee, had an interesting suggestion 
at the meeting: Instead of toroidal connections, whenever an arc 
came to the outer edge of the 4x4 square array, connect it to 
the arc in the nearest neighboring square, with three-quarter-
circle connections at the four corners. For the initial “binary” 
array, you get this:



	 	 	  
Figure 7: Jim Propp’s non-toroidal suggestion for the looping 
puzzle problem.

When Jim showed me this, I suggested connecting adjacent 
thridpoints *within* each edge around the perimeter instead:

	 	 	
Figure 8: My alternative to Jim Propp’s non-toroidal suggestion 
for the looping puzzle problem.



To our considerable surprise, this *does* consist of one single 
loop!  It’s still unclear, to me at least, if there’s anything 
behind this beyond mere happenstance.

Later, in some email correspondence, when he saw the over- and 
under-passing version of the looping puzzle, Jim complained that 
the 16 tiles were no longer a complete set of possible patterns: 
There should really be a separate tile for each assignment of 
which arc goes under the other when two arcs cross. This would 
lead to a 9x9 puzzle with a total of 81 different tiles. That’s 
a bit big for my taste, but I urge anyone undaunted by the size 
to see if there’s anything of interest it.

In response to Jim’s complaint, I designed a 4x4 “Toroidal 
Trellis” problem:
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Figure 9: A 4x4 “Trellis” puzzle, with squares in a “Sol LeWitt” 
arrangement, shown with labels and guidelines (left) and as pure 
trellis (right).



The idea is to think of each tile as containing four thin slats 
of wood, running diagonally by quarter turns, with one slat 
lying over the other where they meet at the tile’s edge. The 
binary numbers indicate whether the slat “entering” an edge (in 
a clockwise direction) lies over or under the slat “exiting" the 
edge, starting at the tile’s topmost edge. One can now picture 
the pattern as a trellis, by joining the “upper slats” that meet 
from the two sides of each edge and likewise for the “lower” 
slats. Since there are 64 slats altogether, one can again ask if 
there’s an arrangement of the tiles so that the trellis, again 
with toroidal connections at the outer edges of the 4x4 array, 
consists of a single loop.  I again don’t know the answer.

Alternative to toroidal identifications, one can imagine the 
pattern in a 4x4 arrangement as a ribbon that reflects with a 
crease when it hits an outer edge of the array. Amazingly, the 
“Sol LeWitt” arrangement in Figure 9 above *is* a single loop! 
So are the 4x4 “binary” arrangement and a “magic square” 
arrangement:
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Figure 10: The Trellis puzzle in its “binary" arrangement (left) 
and a “magic square arrangement (right).  Viewed as (non-
toroidal) ribbons creased at the outer edges of the array, each 
is an example of a single loop.

Certainly not *every* arrangement of the nontoroidal “ribbon” 
trellis consists of a single loop, since it’s easy to arrange 
the tiles so as to produce short loops of length 4.  But I 
suspect that a large number of arrangements do give a single 
loop.  My only evidence of this, however, is the fact that the 
first time I tried a “random” arrangement, it turned out to be 
single-looped. Since there are 16! = 20,922,789,888,000 
different non-toroidal ways to lay out the 16 tiles, I’d be 
surprised indeed if I just got lucky. It might be worth 
someone’s time counting the exact number of single-loop 
arrangements. (It might be worthwhile doing the same for Jim 
Propp's and/or my non-toroidal versions of the looping puzzle 
problem.)

More recently, in 2021, I got to wondering if I could reduce the 
size of the looping puzzle from 4x4 to 3x3. That is, could I 
come up with a set of *nine* patterns that exhaust all the 
possibilities for some design criterion? (It also occurred to me 
to see if I could reduce things yet further to a 2x2 version of 
a puzzle. The ultimate, of course, would be to come up with a 
challenging 1x1 puzzle!) The problem is that 9 doesn’t easily 
relate to 4. But what finally occurred to me is that among the 
24 permutations of four objects, exactly 9 are *derangements*, 
i.e., permutations that have no fixed elements. So this 
suggested two pairs of possibilities:
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Figure 11: Two labellings of the thridpoints of a square (left) 
and two labellings of the corners and midpoints (right) that 
lend themselves to a “deranged” looping puzzle. The idea is to 
connect each “a” point to a “b” point with a *different* number.

The “thridpoint” and corner-midpoint labellings in Figure 11 
produce these two sets of 9 different tiles:
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Figure 12: Two toroidal “derangement" puzzles based on 
connecting thridpoints as labeled in Figure 11 (left). Can 
either of these be rearranged so as to have a single toroidal 
loop?
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Figure 13: Two toroidal “derangement" puzzles based on 
connecting corners to midpoints as labeled in Figure 11 (right). 
Can either of these be rearranged into a single toroidal loop? 
(Note, the convention at corners is to continue from one square 
into the diagonally adjacent square.)

These final four puzzles are small enough that a brute-force 
(computer) search could easily resolve them: There are, after 
all, only 8! = 40,320 toroidally different arrangements. (The 
4x4 puzzles have 15! = 1,307,674,368,000 toroidally different 
arrangements, which is big enough to call for some clever 
pruning.) I myself have not spent any time, either brute-force 
or cleverly, looking systematically for arrangements that give a 
single loop, but I have noticed that for two of the puzzles, 
randomly rearranging the squares often produces a single-loop 
solution, whereas for the other two I’ve yet to find a single-
loop arrangement. I leave it to the reader to guess (and then 
check) which two are which — and, ideally, to figure out why.


