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Introduction: Origins of the structure from two Bauhaus basic design exercises

In this article, we review and expand upon earlier G4G publications ' 2 of the polymorphic
elastegrity structure that was discovered through paper folding and weaving. Two basic
design exercises at the Yale Architecture School led to the discovery of a “paper diamond”.
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Fig. 1: 1971 exercise (a) Students were told that design starts by finding simple rules. Anni Albers of the Bauhaus likened it to
knitting where the simple rules are to place the yarn over or under a needle. (b) Interest and complexity result from using simple
rules. (c) & (d) The simple rules given to students were the only two ways that exist to close pack spheres of equal diameters, as
represented with applicator sticks arranged in octahedral-tetrahedral lattices. The vertices represent the centers of spheres that
can only be close-packed as (c) A-B, repeating every second layer, and (d) A-B-C, repeating every third layer. Students were also
told that 100% of the periodic table crystals are homologous to one or the other close packings, and were instructed to use these
two ways of close packing spheres to create interest. (e) A helix with grooves to grow branch helices as seen in the digital
recreation of the 1971 finding, resulted from the mechanical repetition of A-B, A-B-C, A-B, and so on. 1972 exercise (f) Louis
Kahn, the famous architect, said to brick, “What do you want, brick?” Brick says to you, “I like an arch.” ® Students were told to
allow material to dictate form, in the spirit of Joseph Alpers material exercises;* (g) A diagonal crease on a square piece of paper
became surprisingly stable and raised the question of what would happen if a second diagonal was added; (h) A second crease
created a pyramid. It was recognized as an octahedral fragment due to the familiarity with octahedra gained with the 1971
exercise. [t made one wonder, could several paper pyramids make a whole octahedron, and how many? (i) Experimenting with
paper showed “paper liked an octahedron” as six crosses of triangles could be assembled into a stable octahedron, by placing
two triangles of one axis over, and two triangles of the other axis under adjacent crosses. The resulting octahedron was named a
“paper diamond” because it was hard, the number six suggested carbon six, and uncut diamonds come as octahedra.

Others independently invented what is named paper diamond here, and called it various
names.® Diamonds, though, are crystals and crystals grow. Having named it paper diamond, a
quest started how to grow paper crystals. Two ways of paper crystal growing were found, one
with face connectors fig 2(a), (b), (c) and another with edge connectors fig. 2(e), (f), (9), (h), (i).
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Fig. 2 Face connectors (a) Create a four-cube-corner unit by folding four of the eight octahedral faces; (b) Six four-cube-corner
units; (c) Units assembled by inserting a cube into the missing corner creating a strong bond to grow a crystal; (d) Actual diamond
under an electron microscope resembles the paper analog of the crystal; edge connectors (e) A two-square rectangle with
diagonals and crosses creased through the centers of the squares is the element used to create a pyramid with insertable wings;
(f) Make a square on the diagonal; (g) Fold the square into a pyramid with wings; (h) Wings inserted in each other to grow the
crystal; (i). The pyramids are woven into paper crystals with edge connectors growing the crystal with malleable connections.

A fail xperiment | to the discovery of the Polymorphic Elastegri

Experimenting to simplify the assembly and make sturdier paper crystals led to further
explorations. Creating edge connectors 3(i) as we saw, required a two-square rectangle where
each square had a cross creased and two diagonals through their centers. A slit was torn
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between the two centers of the squares fig 3(a), attempting to discover an improved way of
linking crystal units.
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Fig. 3 Discovery of the Polymorphic Elastegrity (a) A slit is torn between the centers of the pre-creased squares; (b) The
rectangle is folded axially in half and squeezed to create a cross of eight little squares; (c) One axis of the cross has four squares
with a closed ridge on top and open sides. The other axis has four little squares, open on top forming a slit and closed sides; (c)
Six units; (d) Weave units placing the side of the cross with the open slit over a side with a ridge on top; (e) Weaving the six
crosses of little squares over and under as in step (d), results is three large intersecting squares that do not stay tight together.
The slits remain gaping open. It was discarded as a failed experiment. Having forgotten this failed experiment, this flaccid
structure was woven again a few months later. (f) Attempting to salvage time spent creating it, the slits were opened; (g) The little
squares with the slit on top were folded in half on their creased diagonals into two right triangles hinged along a leg. (h) When all
six slits are opened and inverted, twelve elastic hinge systems stabilize the entire structure into an icosahedron. Each hinge
system consists of the two right triangles hinged along a leg, with their hypotenuse elastically hinged to a tetrahedron. Each
tetrahedron is elastically supported by three hinge systems that link it to three tetrahedra that rotate with opposite chirality.

The resulting structure fig. 3(h) has four pairs of tetrahedra along four axes AA’, BB’, CC’, and
DD’ levitating on six pairs of elastic hinge systems. Each hinge system consists of two right
triangles hinged to each other along a leg (shown in green) and along their hypotenuses to two
tetrahedra (shown in red) fig. 4(e). Each pair of hinge systems surrounds a gate with four free
legs fig. 4(d) that open and close around three orthogonal axes 1, 2, and 3 fig. 4 (a), (b), (C).
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Fig. 4 Polymorphic Elastegrity (a), (b), (c) Four tetrahedral axes and three orthogonal gate axes that do not move . (a) Expanded
into a cuboctahedron, leg hinge dihedral angles 180°, hypotenuse hinge 70.52°; (b) Regular icosahedron, leg hinge dihedral
angles 90°, and hypotenuse hinge dihedral angles 28.72°; (c) Contracted into an octahedron, all thirty-six dihedral angles 0°;
(d) Seven non-moving axes all motion is in relation to them; (e) Six gates that open and close around the three orthogonal axes. .

When a force is applied along any of the four tetrahedral axes fig. 5, it actuates all thirty-six
hinges simultaneously. Twelve leg hinges (red), and twenty-four hypotenuse hinges (green) fig.
4(e), open and close symmetrically and in sync around the three axes fig. 4(c & d). The gates
close as the dihedral angles of their leg hinges expand cooperatively to 180°, the hypotenuse
hinge angles expand to 70.52°, and the structure turns into a cuboctahedron with closed
gates fig. 6 (). The six gates open in sync in response to compression along any of the
tetrahedral axes. When the leg hinge dihedral angles reach 90° the twelve vertices outline a
regular icosahedron fig. 6(c). The gates reach their maximum opening at dihedral angles
77.18..°5 The gates close again as dihedral angles contract to 0° and turn the structure into an
octahedron fig. 6. The tetrahedra rotate in sync as they slide along the tetrahedral axes
towards or away from the center, and gates close and open and close again. Four tetrahedra
rotate chirally and four tetrahedra located diametrically opposite rotate anti-chirally.
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Fig. 5 A force is applied on one of the four Fig. 6 Gates open and close as the twelve leg hinge dihedral angles to 180°
tetrahedral axes expand cuboctahedron, 90° icosahedron, and contract to 0° octahedron
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The asymmetrical tetrahedra form a resilient structure that keeps its shape in elastic
equilibrium fig 3(h). When a force deforming is removed, it springs back to its original shape.
This is the reason that it was named elastegrity by analogy to tensegrity, which also maintains
the integrity of the shape through pre-tension by springing back when a deforming force is
removed.

This structure was previously reported at G4G under different names. In 2016 for G4G12 it
yielded a mono-dodecahedron, that is a polyhedron with twelve congruent, but not
necessarily regular faces. In 2018 appropriately for G4G13, its thirteen axes were reported.
At that time it was still known as chiral icosahedral hinge elastegrity. An editor renamed it
Pavlides Elastegrity in 2020 simplifying the name and arguing that structures invented by
architects such as the Hoberman Sphere, and the Rubik’s Cube are named after the architect
who invented them. And since the editor, Elidir King, was classically trained, he also pointed
out that Archimedes, inventor of the Archimedes screw, was an architect, the naval architect
of Syracusia the largest boat ever constructed in antiquity, as well as an engineer and a
mathematician, as Archimedes is more commonly known.

@
Fig. 7 Architects who invented structures: (a) Renamed in 2020 Pavlides Elastegrity, (b) Hoberman Sphere, (c) Rubic’s cube
(d) Archimedes Screw, Architect of the greatest vessel in the antiquity cruise ship, battleship, and freight ship all in one.

However, in 2022, the structure was renamed Polymorphic Elastegrity, due to its shape-shifting
properties. First, it contracts into an octahedron and expands into a cuboctahedron, as we saw
above fig. 6. With further folding, it can flatten into a multiply covered square and morph into
shapes with the vertices of each of the Platonic shapes as presented at G4G12.'

The monododecahedral path
The polymorphic elastegrity, through further foldlng, turns into a monododecahedron Fig. 8(f),
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Fig. 8 Shape shifting through further folding. (a) Eight tetrahedra contracted into an octahedron; b) The eight rigid tetrahedra
are crushed with their right triangle faces bisected through creasing, creating eight groups of triradiational triangles. (c) The
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triradiational triangles open as shown into flat squares subdivided into four little squares through the creases; (d) Fold the
diagonals of the little squares into triangular flaps to cover the slits; (e) The twelve folded flaps create eight pinwheels around the
collapsed centers of the tetrahedral equilateral faces, raising the structure into a cube; (f) By lifting the flaps from the face of the
cube at a dihedral angle ¢ and angle € created by AG L BC so that ¢ + € =90° => sin ¢ + cos € = 1
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Fig. 9 Monododecahedral path - computer animations by Thomas Banchoff : (a) Rhombic ( degenerate pentagons one side is 0);
(b) Pentagons one angle is smaller than 90°, (c) Pentagon has one right angle; (d) Regular dodecahedron; (e) Pentagon one angle
is greater than 108°; (f) Pentagons one angle is much greater than 108°; (g) Rectangle (degenerate pentagon has one angle 180°)

Math proof how to construct a monododecahedron on a cube for any dihedral angle

Use fig. 10 to support the proof that for every dihedral
£ ¢ thereisa £06= £LBAK=ZDEL=ZBCD so that
ABCDE is flat. What we have is the central cube of the
elastegrity in fig. 10, (in what we call the mono-
dodecahedron position). What we are looking for is a
flap’s shape and position such that the vertices of the
flaps together with the vertices of the cube form a
monododecahedron. The cube is given, the angle of the
flap is given. What we need to figure out is where to
position the vertices of the flaps in such a way that the
resulting figure is a mono- dodecahedron. In particular,
ABCDE needs to be flat. (In the physical object the
correct positions for the vertices can be realized by
further folding the flaps). Draw both planes with dihedral
£ ¢ to face oBDLK: (a) plane 1a on through BK, that

will contain flap AABK once Ais fixed, and (b) plane 1b
through DL that will contain flap ADEL, once E is fixed;
Fig. 10 Monododecahedron Draw plane 2 1 oBDLK bisecting it w/ FF’;

Intersect plane 1a & 1bw/ plane 2 creating respectively lines L, where AF will lie once Ais fixed and
L, where EF’ will lie once E is fixed; Draw plane 3 through edge BD w/ dihedral to ©°BDLK Z¢ =
90°- L @; Intersect plane 3 w/ plane 1a & 1b creating lines L; where AB will lie and L, where DE will
lie once A and E are respectively fixed; Intersect L, w/L; to fix point A, and intersect L, w/ L, tofix
point E; Draw AH & EH’ L o0BDLK & GH||G’H’||BK||DL; AAGH =AEG’H’ because

(a) Le=ZLAGH=ZAGH’; (b) GH = G’H’; (c) LAHG = ZEH'G’ = 90°% AAFH = EF’H’ because
(@) L = LAGH = LAG'H; (b) AH = EH’; (c) £ZAHF = EH'F’ = 90° => AF = EF’ => AABK = ADEL
because they are isosceles w/ equal height & base; Extend plane 3 and draw ACBD =AABK =
ADEL; Given that the dihedral angle between ACBD and trapezoid ABDE = 180° by construction;
the dihedral angle between cBDMN & oBKLD = 90°; the dihedral angle between trapezoid ABDE &
oBKLD =Z¢ by construction; => dihedral angle between ABCD and ©°BDMN Z¢’=Z¢

.. for ZBAK=ZDEL=£BCD=4£6 ABCDE is flat Q.E.D

Introducing the Weaire Phelan approximation of minimum tension surfaces

The Polymorphic Elastegrity also yielded through folding the Weaire Phelan mono-
dodecahedron fig. 11(c). When arranged in the approximation of the minimum tension surface
of bubbles, it leaves tetradecahedra fig. 11(d) as empty space in between fig. 11(e).
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Several authors of this article participated in the 2019 Weaire Phelan workshop at ICERM
organized by Glenn Whitney fig. 11(f).® We connected edges of three lengths needed to
assemble the Weaire Phelan matrix Fig. 11(g), Which was an improvement by 0.3% in area® °
over Lord Kelvin’s bubble approximation' Fig 11(b

© (f) @

Fig. 11 Minimum surface tension (a) Bubbles; (b) Lord Kelvin’s approxmatlon truncated octahedron 6 squares, 8 hexagons; (C)
Weare Phelan 1993 monododecahedron 4 equal sides and one longer, 106.6°, 102.6°, 121.6°, 106.6°, 102.6°; (d) Weaire Phelan
tetradecahedron 1887: 4 pentagons congruent to the monododecahedral pentagons; 8 narrow pentagons, 107.02°, 107.02°,
101.54°, 112.21°, 112.21°; 2 hexagons with two parallel sides equal to the monodecahedral pentagon longer side, 126.87°,
116.57°, 116.57°, 126.87°, 116.57°, 116.57°; () 2 tetradecahedra & 2 monododecahedra; (f) Glenn Whitney; (g) WP ICERM 2019.

In an epiphany, during the workshop, it became clear that the Weaire Phelan mono-
dodecahedron lays along the polymorphic elastegrity path that had already been proven to
exist between a rhombic dodecahedron and a cube. It could therefore be obtained through
folding paper. Folding the flaps to the exact 121.59° and connecting the paper Weaire Phelan
monopododecadra with wire and coffee stirrers would outline the WP tetradecahedra fig 12(a)
in the space in between. Appropriate for G4G14 the tetradecahedron, is a polyhedron with
fourteen faces, and was literally pulled out of thin air to present and report at the 2022 G4G.
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Fig. 12 (a) The polymorphic elastegrity folded as a monododecahedron, one angle 90°; (b) Paper folded WP monododecahedron
121.6°, 2X106.6°, 2X102.6°; (c) Study model of the tetradecahedron outlined with wire and coffee stirrers between paper folded
WP monododecahedra; (d) Sketchup model of paper folded WP; (d) Paper model of WP monodocahedra, 3D printed connectors
and straws; (f) and (g) 3D printed WP monododecahedra make the regularity of the WP pattern evident.

(e
Fig. 13 (a) Digital flythrough WP showing regular staggered rows of monododecahedra; (b) View through a column of
tetradecahedra showing alternating orientation of hexagons; (c) View through the narrow tetradecahedral pentagons; (d) Bird’s eye
view and (e) worm’s eye view of the Beijing Olympics Aquatic Center; (f) Interior detail of the Beijing Olympics Aquatic Center.

This article started by citing Anni Albers’s admonition to start designing by discovering simple
rules and then using them to create complexity and interest. The Beijing Olympic Pool, also
known as the “Water Cube”, is an example of starting with the highly regular Weaire Phelan
structure. The engineer Tristram Carfrae suggested it when the architect Chris Bosse, now of
Laboratory of Visionary Architecture (LAVA) proposed a cube of bubbles for the Beijing
Olympics Aquatic Center. The architect worked closely with the engineer to choose the plane
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to cut through the regular pattern to create interest evoking irregular suds. Given that the
structure had physical size, the section needed not to have nodes either just included or just
excluded. They cut through the roof with two planes seven meters apart and through the walls
three and a half meters apart. Underpinning the whimsical appearance of bubbles of the facade
are the simple rules of the Weaire Phelan regular geometry.'

Epilogue
Polymorphic Elastegrity was discovered at the intersection of two experiments arising from the

Bauhaus approach to design. We saw above how a failed experiment to create an easier
assembly and more stable paper crystal in 1982 resulted in this new shape-shifting structure
with interesting geometry. Beyond math a matrix of Polymorphic Elastegrity units exhibits -1
Negative Poisson’s Ratio along the tetrahedral axes. Unrelated to the better known Poisson’s
distribution in statistics, Poisson’s ratio is the ratio of lateral change over the axial resulting in
response to an applied force. For example the ratio of how much a material expands laterally
over how much it shortens when squeezed or how much it gets thinner over elongation under
tension. Negative is the “perverse” material property as the New York Times called it,'* when a
material gets smaller laterally when squeezed down and wider then pulled. The cooperative
retraction of thirty-six elastic hinges suggests engineering applications for energy absorption.
Since 2019 the Space Grant Opportunities in NASA STEM -NNX15AI06H has funded students
with summer stipends to work on the Polymorphic Elastegrity. Physical and in-silico models
(as engineers call animations) brought us closer to engineering applications in
shock absorption similar to the tenseqgrity NASA lander, mechanical analog
sensors similar to tensegrity sensors; that could withstand 800° on the Venus
surface; and augments the tensegrity conjecture in biology,™ opening avenues for
discovering life on other planets. This work has been reported in the annual

reports to NASA: Chris Norcross 2019, Kenneth Mendez 2020, Chelsy Luis 2021.

Fig. 14 Daanish Aleem Qureshi, 2022 recipient of NASA Scholar Summer Stipend working on a matrix of
Polymorphic Elastegrities at the G4G14 offsite event, similar to the one he was funded to help with a sphere indentation
experiment to measure auxeticity, which is a synonym for exhibiting Negative Poisson’s Ratio or NPR, as is it is often abbreviated.
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