$\frac{Introducing The}{\pi T O P^{\Re} \text{ or } PiTO P^{\Re}}$

Kenneth Brecher Departments of Astronomy and Physics Boston University Boston, MA 02215, U.S.A. Email: <u>brecher@bu.edu</u> PiTOP[®] Website: <u>http://www.thepitop.com</u>

Why Pi at G4G13?

(Martin Gardner caricature by Ken Fallin, 2010)

$e^{\pi\sqrt{163}} \equiv 262,537,412,640,768,744.0$

Martin Gardner demonstrated a playful interest in Pi. His April 1975 column in <u>Scientific American</u> entitled "Six Sensational Discoveries" reported that in 1974, Ramanajun's 1913 conjecture shown above had been proven to be an exact result!!!

What is the PiTOP[®]?

It is a physical embodiment of the mathematical constant π . This disk, has a radius of r = 1" and thickness $t = 1/\pi$ " ~ .32". When made in brass, it weighs ~ 4.8 ounces. It displays the first 109 digits of Pi in a spiral pattern on one side. (The pattern was designed in collaboration with Kaz Brecher.)

What is the point of the PiTOP[®]?

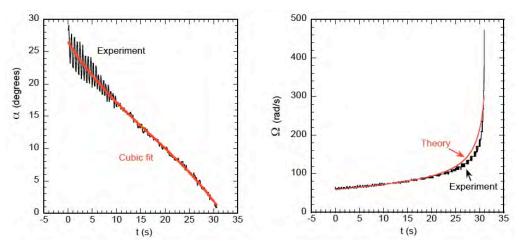
It is a tactile hand sized stress reliever.

It is an elegant paperweight.

It is a beautiful March 14 Pi Day gift.

It is a personal fidget device.

And it also symbolizes profit in economics!


Sound and Light Effects

The PiTOP[®] was designed to optimize its dynamical properties based on a variety of experiments that I carried out with many prototypes. As the PiTOP[®] spins and precesses, it produces a hypnotic sound and light display.

After spinning it on its edge like a coin, the PiTOP[®] loses rotational energy due to friction. As the angle α that it makes with the horizontal decreases with time, its precession frequency Ω increases, tending toward a "finite time singularity".

The above data was collected from time-lapse photographic measurements of the spin of a PiTOP prototype that I sent for analysis to Professor Rod Cross at the University of Sydney, (cf. "Effects of Rolling Friction on a Spinning Coin or Disk", *European Journal of Physics*, 39, #3, 5, 2018).

Cubing the PiTOP[®]

Although one cannot square the circle in a finite number of steps using only a compass and a straightedge, the PiTOP[®] automatically cubes a right circular cylinder of radius r since it has volume $V_{PiTOP} = \pi r^2 t = \pi r^2 r / \pi = r^3 = V_{cube}$.

The PiTOP[®] and The PhiTOP[®]

The PhiTOP was previously introduced at G4G12. They can both be found at:

https://www.etsy.com/shop/SiriusEnigmas