Introducing The $\pi T 0{ }^{\circledR}$ or PiTOP ${ }^{\circledR}$

Kenneth Brecher
Departments of Astronomy and Physics
Boston University
Boston, MA 02215, U.S.A.
Email: brecher@bu.edu
PiTOP ${ }^{\circledR}$ Website: http://www.thepitop.com

Why Pi at G4G13?

(Martin Gardner caricature by Ken Fallin, 2010)

$$
e^{\pi \sqrt{163}} \equiv 262,537,412,640,768,744.0
$$

Martin Gardner demonstrated a playful interest in Pi. His April 1975 column in Scientific American entitled "Six Sensational Discoveries" reported that in 1974, Ramanajun's 1913 conjecture shown above had been proven to be an exact result!!!

What is the PiTOP ${ }^{\circledR}$?

It is a physical embodiment of the mathematical constant π. This disk, has a radius of $r=1 "$ and thickness $t=1 / \pi " \sim .32 "$. When made in brass, it weighs ~ 4.8 ounces. It displays the first 109 digits of $\mathbf{P i}$ in a spiral pattern on one side. (The pattern was designed in collaboration with Kaz Brecher.)

What is the point of the PiTOP ${ }^{\circledR}$?

It is a tactile hand sized stress reliever.
It is an elegant paperweight.
It is a beautiful March 14 Pi Day gift.
It is a personal fidget device.
And it also symbolizes profit in economics!

Sound and Light Effects

The PiTOP ${ }^{\circledR}$ was designed to optimize its dynamical properties based on a variety of experiments that I carried out with many prototypes. As the PiTOP ${ }^{\circledR}$ spins and precesses, it produces a hypnotic sound and light display.

PiTOP ${ }^{\circledR}$ Dynamics

After spinning it on its edge like a coin, the PiTOP ${ }^{\circledR}$ loses rotational energy due to friction. As the angle α that it makes with the horizontal decreases with time, its precession frequency Ω increases, tending toward a "finite time singularity".

The above data was collected from time-lapse photographic measurements of the spin of a PiTOP prototype that I sent for analysis to Professor Rod Cross at the University of Sydney, (cf. "Effects of Rolling Friction on a Spinning Coin or Disk", European Journal of Physics, 39, \#3, 5, 2018).

Cubing the PiTOP ${ }^{\circledR}$

Although one cannot square the circle in a finite number of steps using only a compass and a straightedge, the PiTOP ${ }^{\text {® }}$ automatically cubes a right circular cylinder of radius r since it has volume $V_{\text {Pitop }}=\pi \mathbf{r}^{2} \mathbf{t}=\pi \mathbf{r}^{2} \mathbf{r} / \pi=\mathbf{r}^{3}=\mathrm{V}_{\text {cube }}$.

The PiTOP ${ }^{\circledR}$ and The PhiTOP ${ }^{\circledR}$

The PhiTOP was previously introduced at G4G12. They can both be found at:
https://www.etsy.com/shop/SiriusEnigmas

