
A Few Algorithms for Musical Harmonization
Neil Bickford

You can try out two of these algorithms online at https://neilbickford.com/G4G14/index.htm!

Here’s a neat way to generate a harmony from a melody.

Let’s say we have a musical major scale – this could be C major, D-�at major, D major, or any other
major scale. Number the notes in the scale consecutively, using the number 0 for the �rst scale degree
in some octave. For instance, for C major, we might number the keyboard like this:

And for D-�at major, we might number the keyboard like this:

Now, let’s consider a melody using this numbering system. We’d like to
generate three additional musical parts, using pitches below the melody,
that harmonize well with the melody.

This shows the series of notes 4, 4, 5, 4, 4, 5, 6, 7, 4 in C major.

This makes it so notes with
the same degree always
have the same number taken
mod 7.

This is a bit like the Nashville
Number System, but here
we’ve subtracted 1 from all
numbers, and we have an
unbounded range so we
don’t have to denote the
octave separately.

Traditionally, the four total
parts are named the bass,
tenor, alto, and soprano
voices (as if we were writing
for a SATB choir), counting
from the lowest part to the
highest part. However, this
algorithm doesn’t ensure
that each part is within the
typical singing part range,
and it also doesn’t always
follow voice leading rules.

https://neilbickford.com/G4G14/index.htm

We’ll start by creating three-note chords (triads) in three different
positions, which we’ll call position 0, position 1, and position 2.

To create a position 0 triad, take the melody note n and add notes n-2
and n-4. For instance, if our melody note was 9, we’d create the position
0 triad {5, 7, 9}. The root note, r, is the lowest note of the chord in
position 0 (here, it’s r=n-4).

To create a position 1 triad, start with the chord {n, n+2, n+4} (which is a
position 0 triad with the melody note as the root). We want the melody
note to be the highest part, so we’ll invert the chord by taking all the
notes above the melody and subtracting 7 to move them down an
octave, then sort them from lowest to highest. This gives the chord
{n-5, n-3, n}, with root note r=n.

Finally, to create a position 2 triad, follow the same procedure, but start
by building a position 0 triad where n is the middle note. This gives the
chord {n-5, n-2, n}, with root note r=n-2.

To add the bass part, add the root note shifted down an octave (r-7)
–unless the root note is congruent to 6 mod 7! In that case, add r-9.

Another way of summarizing the above is that we’ll generate one of
three chords:

● Position 0: {n-11, n-4, n-2, n}
● Position 1: {n-7, n-5, n-3, n}
● Position 2: {n-9, n-5, n-2, n}

then if the lowest note is congruent to 6 mod 7, we subtract 2 from it.

To harmonize a melody, take each melody note in turn, generate the
chord above for it, and then randomly choose one of the other two
positions. Importantly, we never repeat the same position twice in a row!

This article’s positions 0, 1,
and 2 are also known as
triads’ root position, �rst
position, and second
position.

What’s going on here is that
when r=6 (mod 7), we get a
tritone between the root and
one of the other notes in the
chord! Moving the root down
two more notes turns this
into an inversion of a
dominant seventh chord,
which usually sounds less
dissonant to most listeners.

This algorithm’s pretty
compact! The core
JavaScript code from this
article’s website for this �ts
in this sidebar:

If (nextPosition == 0)
chord = [n-11,n-4, n-2, n];

else if (nextPosition == 1)
chord = [n-7, n-5, n-3, n];

else
chord = [n-9, n-5, n-2, n];

if((chord[0] % 7) == 6)
chord[0] -= 2;

nextPosition =
Math.floor(

nextPosition + 1
+ Math.random() * 2

) % 3;

Here’s an example of a harmonization generated using this algorithm on
the melody above.

This algorithm comes from Chapter 22, Randomness in Music, of Donald
Knuth’s book Selected Papers on Fun & Games, where he attributes it to a
1969 class from David Kraehenbuehl (1923-1997) at Westminster Choir
College. I’ve rephrased it a bit in the presentation above.

Procedures for creating harmonies have existed for a while, although
they’re usually phrased as a set of constraints. The extra step of
choosing a random harmony that satis�es the constraints sometimes
turns it into an algorithm in the usual sense.

For instance, Johann Joseph Fux’s 1725 Gradus ad Parnassum describes
a set of rules for constructing each of four kinds of counterpoint, such as
beginning and ending on consonance, avoiding tritones, and avoiding
parallel �fths and octaves.

It turns out that the �rst few chapters of Peter Ilyitch Tchaikovsky’s Guide
to the Practical Study of Harmony have guidelines that come relatively
close to describing Kraehenbuehl’s algorithm above! Section 9 of (from
the 1900 English translation) describes the rules above for the three
triad positions above and the bass part (although it doesn’t include the
rule for moving the bass note to create a dominant 7th chord). §14
describes how Kraehenbuehl’s algorithm never uses the same position
twice in a row in terms of avoiding parallel �fths and octaves, with the
constraint that

Here we’ve chosen each new
position randomly, but we
could choose it
deterministically instead. We
have a choice of 3 positions
for the �rst note and 2
positions for each
subsequent note, for a total
of 3 2m-1 possible
harmonizations of an
m-note melody. Knuth also
shows how to
steganographically encode
information this way, as a
stream of a base-3 integer
followed by m-1 bits.

A set of constraints can also
be a program! One can write
a Sudoku solver in Prolog by
specifying the rules of
Sudoku and the initial clues
as CLP(FD) constraints;
Prolog’s constraint solver will
�nd a solution.

Two triads, however closely related internally and externally,
must never directly follow each other in the same position, as
parallel �fths and octaves must necessarily occur.

In addition to algorithms like the ones described above, some musical
harmonization algorithms take a corpus of existing harmonized pieces,
then try to construct a statistical model of what harmonies in the corpus
tend to look like. They can then generate harmonies for new melodies by
choosing from the distribution of harmonies they think are likely.

Hild, Feulner and Menzel (1991) trained a system named HARMONET on
a collection of 400 Bach chorales. The neural network (or neural
networks – it can use one, or choose between the outputs of three) tries
to guess the next symbolic harmony given the previous harmonies, the
previous, current, and next notes, and the rhythmic location of the note
in each bar.

From HARMONET: A Neural Net for Harmonizing Chorales in the Style of
J. S. Bach

More recently, David Li’s Choir and Blob Opera are web applications
that also generate four-part SATB harmonies using a neural network.
There doesn’t appear to be much information about the neural network
they use (or, worryingly, about the dataset it was trained on!), but its
input and output format looks similar to Liang, Gotham, Johnson, and
Shotton’s BachBot (from Automatic Stylistic Composition of Bach
Chorales from Deep LSTM, 2017).

BachBot uses a Long Short-Term Memory (LSTM) architecture, which
essentially is a deep neural network that transforms vectors to other
vectors while keeping some internal memory state.

Both Choir and Blob Opera
use the same neural network
– or, at least, the same
weights. Blob Opera has an
additional network to
synthesize sound.

BachBot’s source code is
available online at
https://github.com/feynman
liang/bachbot.

BachBot takes as input a series of 16th-note frames, each of which contains a melody note (continued
or not from the last frame) or a fermata (denoting the end of a musical phrase). These are embedded
into vectors and passed one by one to the LSTM, which outputs a probability distribution. Liang et al.

https://github.com/feynmanliang/bachbot
https://github.com/feynmanliang/bachbot

then optimized the parameters of the model so that it tended to assign high probabilities to the full
harmony of the Bach chorale for that frame. When running on new melodies, BachBot inputs frame
and melody symbols to the LSTM, retrieves the note probability distribution output by the LSTM, and
chooses the harmony consisting of the highest-probability notes. If we wanted BachBot to make more
unexpected decisions, we could instead have it randomly sample from the probability distribution.

However, It’s possible to miss in the above discussion that constructing harmonies is an art. There are
many harmonies Kraehenbuehl’s algorithm above can’t construct. The neural network-based methods
would be unlikely to guess surprising but sublime melodies, and also usually have no way to artistically
collaborate with a user. The algorithms here also generally have no concept of the emotions of the
piece – Kraehenbuehl’s algorithm will choose a random harmonization at each step!

Breaking melodic patterns can be a powerful tool. Additionally, books on harmony sometimes have
con�icting guidelines, and while that de�es computer implementation, that’s okay: Tchaikovsky, for
instance, writes of weighing which con�icting rules to follow, or of breaking earlier rules artistically.

