
Playing nice with a crooked coin

1 A motivating problem

Two kids have found a coin and want a fair way of deciding who gets to keep it, by tossing it a finite
number of times. Let p be the probability of the coin landing heads. We may assume by symmetry that
0 < p ≤ 1

2 . Suppose the coin is fair, that is, p = 1
2 . Clearly one toss will suffice.

Suppose the coin is crooked. We may toss the coin twice. A head followed by a tail means that the first
kid gets the coin, while a tail followed by a head means that the second kid gets the coin. If the coin
lands heads both times or tails both times, the process is repeated. This is clearly fair. However, if some
super-being is having fun with the kids, they may be tossing heads until the end of time. Thus this is not
a solution as it violates the condition that a fair decision must be reached within a finite number of tosses.

If 0 < p < 1
2 , the task is not always possible, but there are infinitely many values of p for which workable

protocols exist. Suppose we toss the coin twice. Two tails means that the first kid gets the coin. Otherwise
the other kid gets it. To make this fair, we need (1− p)2 = 1

2 . Hence 1− p = 1√
2

and p = 1− 1√
2
.

For another possible value, suppose we toss the coin three times. The first kid gets the coin if and only if
it lands tails all three times. Then (1− p)3 = 1

2 and p = 1− 1
3√2

. It is clear that p = 1− 1
n√2 works for any

positive integer n.

2 A second example, introducing Pascal’s triangle

Let’s look at four kids now. In this example we give an idea of a general technique to produce solutions
using Pascal’s triangle. We present three possible solutions.

1. The obvious value is p = 1
2 , and the coin needs to be tossed only twice. Flipping the coin twice

yields the possible results of HH, HT, TH, TT of equal probability. Assigning each result to a person
provides a fair game.

2. Suppose the coin is not fair. Let q = 1− p. Tossing it six times, we have Let q = 1− p. Suppose we
flip the coin six times. Then,

1 = (p + q)6

so after expanding we have,

1 = p6 + 6p5q + 15p4q2 + 20p3q3 + 15p2q4 + 6pq5 + q6 . (1)

Next we collect terms divisible by 3 together

1 = 3(2p5q + 5p4q2 + 6p3q3 + 5p2q4 + 2p5q) + p6 + 2p3q3 + q6 .

For each of the three copies of the outcomes given by 2p5q + 5p4q2 + 6p3q3 + 5p2q4 + 2p5q we can
assign to one person. This way we guarantee each of them will have the same probability of winning.
Therefore it suffices to make sure the final person has the same probability as the others, ie we want
to find find p and q such that

1

4
= p6 + 2p3q3 + q6



or
1

4
= (p3 + q3)2 .

Defining 0 < r < 1
2 as p = 1

2 − r yields

1

4
=

((
1

2
− r

)3

+

(
1

2
+ r

)3
)2

1

4
=

(
1

4
+ 3r2

)2

,

which lets us solve r = 1√
12

.

3. Similarly tossing a different crooked coins nine times, 1 = ((12 + r) + (12 − r))9 is the sum of(
1

2
+ r

)9

+ 3

(
1

2
+ r

)6(1

2
− r

)3

+ 3

(
1

2
+ r

)3(1

2
− r

)6

+

(
1

2
− r

)9

and other terms whose coefficients are all multiples of 3. So we set

1

4
=

((
1

2
+ r

)3

+

(
1

2
− r

)3
)3

=

(
1

4
+ 3r2

)3

.

It follows that 1
4 + 3r2 = 1

3√4
so that r =

√
4− 3√4
12 3√4

.

In summary, three possible values are p = 1
2 , p = 1

2 −
1√
12

and p = 1
2 −

√
4− 3√4
12 3√4

.

Remark.
Where did the inspiration to check 6 flips and 9 flips come from? The solution above is based on Pascal’s
Triangle, involving a subtraction of the 2nd row from the 6th row, and a subtraction of the 3rd row from
the 9th row. In particular, for the second solution (p = 1

2 −
1√
12

) the numbers in the 6th row not circled

are already divisible by 3, and subtracting the circled numbers in the 2nd row from the 3rd yields numbers
which are divisible by 3.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1



In this sense, the 6th row “minus” the 2nd row yields only numbers divisible by 3. Because of this we are
able to to rewrite (1) as a perfect square plus several terms with coefficients divisible by 3. This is our
central strategy. Looking at more rows of Pascal’s triangle we see this approach works again to get the

probability p = 1
2 −

√
4− 3√4
12 3√4

.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

3 A third example, finding infinite solutions

What about an arbitrary number of kids? Call it n. If n = 3 we need to take the difference of two rows of
Pascal’s triangle to obtain only multiples of 2. This should be easier to do!

Let’s consider the second row of Pascal’s triangle,

1 =

(
1

2
− r

)2

+ 2

(
1

2
− r

)(
1

2
+ r

)
+

(
1

2
+ r

)2

,

so that removing the even terms and letting the leftover equal to 1/3 gives,

1

3
=

(
1

2
− r

)2

+

(
1

2
+ r

)2

so that,

− 1

12
= r2

which has no real solutions. While we weren’t lucky this time, this approach does work for flipping the
coin more than twice!

Subtracting the fourth row from the second provides leaves of 2, which produces the probability of

p =
1

2
−

√
1

2
√

3
− 1

4
.



Subtracting the sixth row from the third also leaves multiples of 2, this time producing the probability of

p =
1

2
−

√
1

2 3
√

3
− 1

4
.

It seems reasonable to conjecture that for 3 people, and with k ≥ 2, if you flip the coin 2k times then
setting the probability

p =
1

2
−

√
1

2 k
√

3
− 1

4

will provide a setup for a fair game. It is worth noting that as k →∞ then p→ 0.

One can show this conjecture holds true as(
2a

2b

)
≡
(
a

b

)
(mod 2) ,

and (
2a

2b + 1

)
≡ 0 (mod 2) .

Similarly, for n = 5 people, one can apply a similar strategy. For any k ≥ 2 we flip the coin 4k times and
use a probability of,

p =
1

2
−

√
1

2 2k
√

5
− 1

4
.

This time the tricky part is proving the following lemma,

Lemma. For positive integers a and b,

(a) (
4a

2b + 1

)
≡ 0 (mod 4) for 0 ≤ b ≤ 2a− 1,

(b) (
4a

2b

)
≡
(

2a

b

)
(mod 4) for 0 ≤ b ≤ 2a.

Proof. First we make repeated use of the recursive formula. Then for 0 ≤ c ≤ 4a,(
4a

c

)
=

(
4a− 1

c

)
+

(
4a− 1

c− 1

)
=

(
4a− 2

c

)
+ 2

(
4a− 2

c− 1

)
+

(
4a− 2

c

)
=

(
4a− 3

c

)
+ 3

(
4a− 3

c− 1

)
+ 3

(
4a− 3

c− 2

)
+

(
4a− 3

c− 3

)
=

(
4a− 4

c

)
+ 4

(
4a− 4

c− 1

)
+ 6

(
4a− 4

c− 2

)
+ 4

(
4a− 4

c− 3

)
+

(
4a− 4

c− 4

)
.



So we have shown (
4a

c

)
≡
(

4(a− 1)

c

)
+ 2

(
4(a− 1)

c− 2

)
+

(
4(a− 1)

c− 4

)
(mod 4) . (2)

We will prove (a) first. Notice it is trivially true for b = 0 (equivalently for b = 2a − 1), and for b = 1
(equivalently for b = 2a− 2) we have(

4a

3

)
=

(4a)(4a− 1)(4a− 2)

3 · 2
≡ 0 (mod 4) .

We prove the rest by induction on a. The base case is easy to see. We may assume (a) is true for a − 1.
By (2) with c = 2b + 1 we have,(

4a

2b + 1

)
≡
(

4(a− 1)

2b + 1

)
+ 2

(
4(a− 1)

2b− 1

)
+

(
4(a− 1)

2(b− 1)− 1

)
(mod 4)

so by the inductive hypothesis, (
4a

2b + 1

)
≡ 0 + 2 · 0 + 0 ≡ 0 (mod 4) .

Next we prove (b). We have (b) is trivially true for b = 0 (equivalently b = 2a), and it is also true for b = 1
(equivalently for b = 2a− 2) as

(
2a
1

)
= 2a and(

4a

2

)
=

(4a)(4a− 1)

2
≡ 2a(−1) ≡ 2a (mod 4) .

For b = 2 (equivalently b = 2a− 4) we have,(
4a

4

)
=

(4a)(4a− 1)(2(2a− 1))(4a− 3)

4 · 3 · 2
≡ (−1)(−3)(−1)a(2a− 1) ≡ a(2a− 1) (mod 4)

and (
2a

2

)
=

(2a)(2a− 1)

2
= a(2a− 1) .

We can prove the rest by induction on a. The base case is again easy to see. We may assume (b) is true
for a− 1. On one hand by (2) with c = 2b we have,(

4a

2b + 1

)
≡
(

4(a− 1)

2b

)
+ 2

(
4(a− 1)

2(b− 1)

)
+

(
4(a− 1)

2(b− 2)

)
(mod 4)

and on the other hand by the recursive formula,(
2a

b

)
=

(
2a− 1

b

)
+

(
2a− 1

b− 1

)
=

(
2(a− 1)

b

)
+ 2

(
2(a− 1)

b− 1

)
+

(
2(a− 1)

b− 2

)
and so

(
4a
2b

)
≡
(
2a
b

)
(mod 4) by the inductive hypothesis.



4 Finding more kids

Let us first give some general rules. Suppose we have a protocol which works for n kids and n has a
non-trivial factorization n = ab. Then we also have a protocol which works for a kids. We just make b
copies of each of them. By symmetry, we have a protocol which works for b kids. This is called the Factor
Rule.

Suppose we have a protocol which works for a kids and a protocol which works for b kids. We do not
necessarily have a protocol for ab kids unless the probability value for both protocols are the same. Then
we divide the kids into a groups of size b, use the protocol for b kids to determine which group gets the
coin, and then use the protocol for a kids within the lucky group. This is called the Product Rule.

The restriction in Product Rule vanishes when a = b, where a common probability value is guaranteed.
Thus if we have a protocol which works for a kids, then we also have a protocol for ab kids for any b. This
is called the Power Rule.

Let’s try to apply these rules. We have already seen in section 3 that flipping the coin four times and

setting r =
√

1
2
√
3
− 1

4 works for three kids.

Suppose we toss a crooked coin five times. Then

1 =

(
1

2
− r

)5

+

(
1

2
+ r

)5

+ 5

((
1

2
− r

)4(1

2
+ r

)

+ 2

(
1

2
− r

)3(1

2
+ r

)2

+ 2

(
1

2
− r

)2(1

2
+ r

)3

+

(
1

2
− r

)(
1

2
+ r

)4
)
.

Note that (12 − r)5 + (12 + r)5 = 1
16 + 5

2r
2 + 5r4. Setting this equal to 1

6 , r =
√

1
2
√
3
− 1

4 works for six kids.

This is exactly the same value as the one obtained in the preceding case for three kids.

The Product Rule now yields a protocol for 18 kids. However, such a protocol can be derived from just
the protocol for 6 kids, via a protocol for 36 kids. We apply the Power Rule followed by the Factor
Rule.

Let’s start by tossing the coin some number of times then look for an n that works. Let’s start by tossing
the crooked coins seven times. Then

1 =

(
1

2
− r

)7

+

(
1

2
− r

)7

+7

((
1

2
− r

)6(1

2
+ r

)
+ 3

(
1

2
− r

)5(1

2
− r

)2

+ 5

(
1

2
− r

)4(1

2
− r

)3

+5

(
1

2
− r

)3(1

2
− r

)4

+ 3

(
1

2
− r

)2(1

2
− r

)5

+

(
1

2
− r

)(
1

2
− r

)6
)
.

Note that (12 − r)7 + (12 + r)7 = 1
64 + 21

16r
2 + 35

4 r
4 + 7r6. Setting this equal to 1

8 , r is the unique positive
root of 64r6 + 80r4 + 12r2 − 1 = 0. This works for eight kids.



Suppose we toss a crooked coins eight times. Then

1 =

(
1

2
+ r

)8

+4

(
1

2
+ r

)6(1

2
− r

)2

+6

(
1

2
+ r

)4(1

2
− r

)4

+4

(
1

2
+ r

)2(1

2
− r

)6

+

(
1

2
− r

)8

+8

((
1

2
+ r

)7(1

2
− r

)
+ 3

(
1

2
+ r

)6(1

2
− r

)2

+ 7

(
1

2
+ r

)5(1

2
− r

)3

+ 8

(
1

2
+ r

)4(1

2
− r

)4

+7

(
1

2
+ r

)3(1

2
− r

)5

+ 3

(
1

2
+ r

)2(1

2
− r

)6

+

(
1

2
+ r

)(
1

2
− r

)7
)
.

Note that ((12 − r)2 + (12 + r)2)4 = (12 + 2r2)4. Setting it equal to 1
3 , we have 1

2 + 2r2 = 1
4√3

. Hence

r =
√

2− 4√3
4 4√3

works for three kids. Setting it equal to 1
5 , we have 1

2 + 2r2 = 1
4√5

. Hence r =
√

2− 4√5
4 4√5

works

for five kids. Setting it equal to 1
9 , we have 1

2 + 2r2 = 1√
3
. Hence r =

√
2
√
3−3
12 works for nine kids.

Suppose we toss a crooked coins nine times. Then

1 =

(
1

2
− r

)9

+ 3

(
1

2
− r

)6(1

2
+ r

)3

+ 3

(
1

2
− r

)3(1

2
+ r

)6

+

(
1

2
+ r

)9

+9

((
1

2
+ r

)8(1

2
− r

)
+ 4

(
1

2
+ r

)7(1

2
− r

)2

+ 9

(
1

2
+ r

)6(1

2
− r

)3

+ 14

(
1

2
+ r

)5(1

2
− r

)4

+14

(
1

2
+ r

)4(1

2
− r

)5

+ 9

(
1

2
+ r

)3(1

2
− r

)6

+ 4

(
1

2
+ r

)2(1

2
− r

)7

+

(
1

2
+ r

)(
1

2
− r

)8
)
.

Note that ((12 − r)3 + (12 + r)3)3 = (14 + 3r2)3. Setting this equal to 1
4 , r =

√
4− 3√4
12 3√4

works for four kids as

we saw in section 2. Setting this equal to 1
10 , r =

√
4− 3√10
12 3√10

works for ten kids.

We do not have a protocol which works for seven kids. Perhaps the reader can construct one. The
inspiration for this problem comes from the Hungarian Mathematical Olympiad, called the Kurschak
Competition.


