Solving Rep-tile by Computers: Performance of Solvers and Analyses of Solutions

Mutsunori Banbara*
Kakeru Nakamura ${ }^{\S}$

Kenji Hashimoto*
Masaaki Nishino ${ }^{\mathbb{I}}$
Yushi Unol

Takashi Horiyama ${ }^{\dagger} \quad$ Shin-ichi Minato ${ }^{\ddagger}$
Masahiko Sakai*
Ryuhei Uehara ${ }^{8}$

October 12, 2021

Abstract

A rep-tile is a polygon that can be dissected into smaller copies (of the same size) of the original polygon. A polyomino is a polygon that is formed by joining one or more unit squares edge to edge. These two notions were first introduced and investigated by Solomon W. Golomb in the 1950s and popularized by Martin Gardner in the 1960s. Since then, dozens of studies have been made in communities of recreational mathematics and puzzles. In this study, we first focus on the specific rep-tiles that have been investigated in these communities. Since the notion of rep-tiles is so simple that can be formulated mathematically in a natural way, we can apply a representative puzzle solver, a MIP solver, and SAT-based solvers for solving the rep-tile problem in common. In comparing their performance, we can conclude that the puzzle solver is the weakest while the SAT-based solvers are the strongest in the context of simple puzzle solving. We then turn to analyses of the specific rep-tiles. Using some properties of the rep-tile patterns found by a solver, we can complete analyses of specific rep-tiles up to certain sizes. That is, up to certain sizes, we can determine the existence of solutions, clarify the number of the solutions, or we can enumerate all the solutions for each size. In the last case, we find new series of solutions for the rep-tiles which have never been found in the communities.

1 Introduction

In some games like Tetris, polygons obtained by joining unit squares edge to edge are used as their pieces. These polygons are called polyominoes, and they have been used in popular puzzles since at least 1907 . Solomon W. Golomb introduced the name polyomino in 1953 and was widely investigated 11. It was popularized in the 1960s by the famous column in Scientific American written by Martin Gardner [2].

Figure 1: An example of a rep-tile of rep-4.
Golomb is also known as an inventor of the notion of rep-tile. A polygon P is called rep-tile if it can be dissected into smaller copies of P. Especially, if P can be dissected into n copies, it is said to

[^0]be rep- n. An example of a rep-tile of rep- 4 is given in Figure 1. We can observe that each of 4 copies can be dissected into 4 smaller copies, which give us rep-16. That is, a rep-tile of rep- n is also rep- n^{i} for any positive integer $i=1,2, \ldots$. We also extend the rep-tile of rep- n by tiling n copies to make a larger pattern. That is, we can tile the plane by repeating this process. It is known that some rep-tile can be used to generate acyclic tiling (i.e., the tiling pattern cannot be identical by shifting and rotation). Both cyclic and acyclic tilings have been well investigated since they have applications to chemistry, especially, crystallography 3. From the viewpoints of mathematics and art, the notion of rep-tile is popular as we can obtain tiling of the plane with the same shapes of different sizes by replacing a part of the rep-tiles by their copies recursively.

Figure 2: The 6-ominoes of stair-shape, J-shape, and F-shape
Gardner introduced the polyomino rep-tiles in 3]. Precisely, he introduced three 6 -ominoes (polyominoes formed by 6 unit squares) in Figure 2 as rep-tiles of rep-144. When the article 3 was written, the minimum number of dissections for these three rep-tiles was conjectured as 144 . Namely, they are the rep-tiles of rep-144, and not rep- k for any $1<k<144$. However, they have been found out that the left stair-shape is a rep-tile of rep-121, the central J-shape is a rep-tile of rep-36, and the right F-shape is a rep-tile of rep-64 [3, 4].

Polyomino rep-tiles have a long history mainly in the contexts of puzzles and recreational mathematics. They have been investigated since the 1950s, however, they have relied on discoveries by hand. In fact, there are many constructive solutions for these puzzles on the web page 4. However, these puzzles have not yet "solved" in the strict sense since any nonexistent results for these cases have not yet be given.

In this research, we first experiment on these three polyominoes in Figure 2 and check if they are rep- n for each n by the representative approaches by a computer. Since the notion of a rep-tile is a quite simple puzzle, we can represent the conditions of a rep-tile in several different natural ways in the terms of representative problem solvers. Therefore, we can compare the performance of the different problem solvers using such a simple puzzle as a common problem. We use the following three different approaches to solving the rep-tiles by a computer.

Puzzle solver and implementation based on dancing links: Nowadays, most puzzle designers use a free puzzle solver. It is based on a data structure called dancing links proposed by Knuth. It is said that dancing links is the data structure that allows us to perform backtracking efficiently, and hence it is suitable to analyze puzzles. Although we do not know the details of the implementation of the free puzzle solver, we also independently implemented two algorithms; one uses dancing links, and the other uses dancing links with ZDD to make it faster.

MIP solver: When we formalize the solutions of a rep-tile by constraint integer programming, we can solve it by mixed integer programming (MIP) solvers. The conditions of a rep-tile can be formalized in a relatively simple integer programming (IP), and we can decide if the rep-tile has a solution if and only if the corresponding instance in the form of the IP is feasible. Since each feasible solution corresponds to a solution, the number of feasible solutions also gives the number of solutions of the rep-tile. In this formulation, the feasibility is the issue and hence the optimization term in the MIP solver is redundant.

SAT-based solver: Most instances of the integer programming can be solved by SAT-based solvers with some modifications of constraints. It is the case for the conditions of a rep-tile, and hence the IP formulation can be translated to the constraints of the SAT-based solvers.

In summary, the puzzle solver and programs based on dancing links, even if we use ZDD, cannot solve rep-tiles of rep- n for large n. However, this fact does not mean the limit of using a computer. The MIP solver can solve rep-tiles of rep- n for larger n than the puzzle solvers. Moreover, we found out that the

k	1		2	3	4	5		6	7			8		9	10	11		
4	1		0	0	0	0		0	0			0		0	0 32	328582	628812	5138816
\square	1		0	0	0	0	2621		0			0		0	0			0
¢	1		0	0	0	0		0	0		1358954			51539607552	0			0
k	12														13	\| 14	15	16
\square	7513742553498633531870412820									421105971327597731222250323968						0	0	0
\square	545409716939029673955819520										0					0	0	0
¢	693242756013012824879005696										3658830332096120778961977344					4	>0	> 0
k		17		18		19	20	2	1	22	- 23	2		25				
\square		0		0		$?$?		?	?	> 0	$>$		>0				
\square		0		>0		0	0		0	0	0	$>$		0				
■		>0		?		> 0	> 0	$>$?	> 0	$>$		>0				

Table 1: The number of distinct dissections of k^{2}-omino rep-tiles, where each number indicates the number of solutions, where 0 means no solution, >0 means at least one solution, and ? means unknown.

SAT-based solvers can solve much larger sizes than the MIP solver. These results were contrary to our expectations.

By using a model counting method with a SAT-based solver, we succeeded to count the number of solutions of rep-tiles of certain sizes, which are bigger than the previously known results. Our results are summarized in Table 1. (As we will describe later, there exist n-omino rep-tiles only when $n=k^{2}$ for some positive integer k. Therefore, we will consider k^{2}-omino rep-tiles for $k=1,2, \ldots$.)

By examining in detail the number of solutions and the specific individual solutions, we obtain two major new results regarding rep-tiles.

Each 0 in Table 1 indicates that there is no rep-tile of rep- k^{2} for the corresponding 6 -omino. Since the previously known results of rep-tiles only indicate the existence of a solution constructively, it remains open whether there is a solution for other sizes. In this paper, we show for the first time that there is no solution up to a certain size. It was conjectured that these three rep-tiles of rep-144 were the minimum size in [3, and then gradually, smaller solutions were shown constructively. However, it has never been proved that they are the minimum number. Our results in Table 1 reveal for the first time that they are all the minimum rep-tiles. They put an end to the history of exploration of these rep-tiles for more than 50 years.

As for the size in which solutions exist, we succeed in completely characterizing some of the solutions by analyzing the number of solutions and patterns of these solutions. They contain whole new types of solutions that are not included in previously known constructive solutions. We also succeed in constructing solutions with completely different characteristics from the known solutions by combining a constructive method and a search using these new types of solutions as clues. By developing these new types of solutions, it may be possible to find completely new solutions even for sizes that are previously expected to have no solution.

2 Preliminaries

A polyomino is a simple polygon that can be obtained by joining unit squares edge by edge. All polygons in this paper are polyominoes. For an integer s, a polyomino of area s is called an s-omino. A simple polygon P is a rep-tile of rep- n if P can be dissected into n congruent polygons similar to P.

In this paper, we focus on polyomino rep-tiles. Then the following theorem is important.
Theorem 1 When a polyomino P is a rep-tile of rep-n, n is a square number. That is, there exists a natural number k such that $n=k^{2}$.

Proof Let P be a t-omino. That is, P consists of t unit squares. By assumption, P can be dissected to n copies of P^{\prime}, where P^{\prime} is similar to P. Then, since a unit square has an edge of length 1 , the corresponding square of P^{\prime} has an edge of length $1 / \sqrt{n}$. Let ℓ be the length of a shortest edge e of the polyomino P. Then, ℓ is an integer and ℓ should be a multiple of $1 / \sqrt{n}$ since this edge e is formed by tiling P^{\prime}. Therefore, \sqrt{n} should be an integer, and hence n is a square number.

By Theorem 1, a polyomino P cannot be a rep-tile of rep- n when n is not a square number. Therefore, we assume that $n=k^{2}$ for some positive integer k without loss of generality. In order to compare to the previous results, we focus on the three 6 -ominoes shown in Figure 2 in this paper. We call each of them stair-shape, J-shape, and F-shape, respectively.

Among these three 6 -ominoes, the J-shape and the F-shape are concave, and hence the concave part should be filled by the other piece to construct a rep-tile. Precisely, a polyomino P is concave if there exists a unit square not belonging to P but it shares three edges with P. We call this square concave square of P.

In this research, we solve the polyomino rep-tile problem for the three 6 -ominoes by some problem solvers. When we use MIP solver or SAT-based solvers, we have to describe the constraints of the rep-tile problem. Here we give the common way for the representation.

As a simple example, we consider a domino (or 2-omino) P of rep- 4 . In this case, since $4=2^{2}$ is the square number of $k=2$, we consider P as an 8 -omino of size 4×2 by scaling 2 and fill P by 4 dominoes of size 2×1. We first assign a unique number to each unit square of P. We let | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 6 | 7 | for example. When we tile 4 dominoes on the 8 -omino P, a binary variable $A(i, j)$ using the numbers of unit squares indicates a way of each domino. To make the representation unique, we assume that $i<j$. For example, when $A(0,1)=1$, it means that a domino covers the unit squares 0 and 1 . For this P, we use 10 binary variables $(A(0,1), A(1,2), A(2,3), A(4,5), A(5,6), A(6,7), A(0,4), A(1,5), A(2,6), A(3,7))$ to represent if a domino covers the corresponding unit squares.

Next, we introduce constraints for each unit square. Precisely, since each unit square i should be covered by just one domino, we have the following constraints.

$$
\begin{array}{lc}
\text { Constraint for the square } 0: & A(0,1)+A(0,4)=1 \\
\text { Constraint for the square } 1: & A(0,1)+A(1,2)+A(1,5)=1 \\
\text { Constraint for the square } 2: & A(1,2)+A(2,3)+A(2,6)=1 \\
\text { Constraint for the square } 3: & A(2,3)+A(3,7)=1 \\
\text { Constraint for the square } 4: & A(4,5)+A(0,4)=1 \\
\text { Constraint for the square } 5: & A(4,5)+A(5,6)+A(1,5)=1 \\
\text { Constraint for the square } 6: & A(5,6)+A(6,7)+A(2,6)=1 \\
\text { Constraint for the square } 7: & A(6,7)+A(3,7)=1
\end{array}
$$

It is clear that P is a rep-tile of rep- 4 if and only if there is a solution that satisfies these eight constraints.
In this paper, we wrote programs that generate the declarations of the binary variables and the corresponding constraints for each combination of 6-ominoes stair-shape, J-shape, or F-shape, and a square number $n=k^{2}$.

3 Comparisons of Solvers

As representative problem solvers, we chose BurrTools as a puzzle solver, SCIP as a MIP solver, and clingo and NaPS as SAT-based solvers. For each of the three rep-tiles, we list their running time for solving the rep-tile. The details and resources of the solvers follow them. Tables 2, 3, 4 summarize the running times of solvers for each rep-tile. In the tables, DLX indicates the algorithm based on dancing links, DLZ indicates the algorithm based on dancing links with ZDD, which are implemented by ourselves to compare with BurrTools. We omit the cases $k<6$ since they are too short, and each number represents seconds. The symbol ? means timeout in this case. We set the time limit for each solver as 10 minutes (600 seconds) in DLX/DLZ, 12 hours (43200 seconds) in clingo, and 2 days (172800 seconds) in NaPS. The entry OF in DLZ means "overflow of cache". After each k, we put \checkmark, \times, and
? which mean "there exists a solution", "there exists no solution", and "we do not know if there is a solution or not," respectively.

k (Solution?)	$6(\times)$	$7(\times)$	$8(\times)$	$9(\times)$	$10(\times)$	$11(\checkmark)$	$12(\checkmark)$	$13(\checkmark)$	$14(\times)$	$15(\times)$
BurrTools 0.6.3	<1	2	5760	$?$	$?$	$?$	$?$	$?$	$?$	$?$
DLX(1st solution)	<1	15	$?$	$?$	$?$	$?$	<1	$?$	$?$	$?$
DLX(all solutions)	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
DLZ(1st solution)	<1	<1	<1	391	OF	OF	<1	OF	OF	OF
DLZ(all solutions)	$?$	$?$	$?$	$?$	$?$	$?$	OF	OF	$?$	$?$
SCIP 7.0.2	1	1	1	1	56	42	7	120	$?$	$?$
clingo 5.4.0	<1	<1	<1	<1	<1	1	2	2	8	$?$
NaPS 1.02b2	<1	<1	<1	<1	<1	<1	<1	1	17	6388
k (Solution?)	$16(\times)$	$17(\times)$	$18(\times)$	$19(?)$	$20(?)$	$21(?)$	$22(?)$	$23(\checkmark)$	$24(\checkmark)$	$25(\checkmark)$
clingo 5.4.0	$?$	2946	$?$	$?$	$?$	$?$	$?$	8911	26973	$?$
NaPS 1.02b2	(421700)	1163	12530	$?$	$?$	$?$	$?$	529	1415	1744

Table 2: Time (sec.) for deciding if \quad is a rep-tile of rep- k^{2} (NaPS finishes its computation after the time limit when $k=16$)

k (Solution?)	$6(\checkmark)$	$7(\times)$	$8(\times)$	$9(\times)$	$10(\times)$	$11(\times)$	$12(\checkmark)$	$13(\times)$	$14(\times)$	$15(\times)$
BurrTools 0.6.3	6	<1	<1	$?$	$?$	$?$	$?$	$?$	$?$	$?$
DLX(1st solution)	<1	<1	$?$	$?$	$?$	$?$	<1	$?$	$?$	$?$
DLX(all solutions)	<1	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
DLZ(1st solution)	<1	<1	<1	<1	<1	241	<1	146	OF	OF
DLZ(all solutions)	<1	$?$	$?$	$?$	$?$	$?$	6	$?$	$?$	$?$
SCIP 7.0.2	1	1	1	5	9	14	69	4	6	19800
clingo 5.4.0	<1	<1	<1	1	2	5	4	2	4	5
NaPS 1.02b2	<1	<1	<1	<1	1	2	2	7	52	116
k (Solution?)	$16(\times)$	$17(\times)$	$18(\checkmark)$	$19(\times)$	$20(\times)$	$21(\times)$	$22(\times)$	$23(\times)$	$24(\checkmark)$	$25(\times)$
clingo 5.4.0	6	11	9	5336	41489	$?$	$?$	$?$	1454	$?$
NaPS 1.02b2	208	282	113	1531	116400	$?$	$?$	$?$	1675	$?$

Table 3: Time (sec.) for deciding if $\quad \square$ is a rep-tile of rep- k^{2}

Comparing to the DLX based on just dancing links, BurrTools implements some more tricks. The DLZ, which uses not only dancing links but also ZDD, performs more efficiently than DLX, however, it causes memory overflow when the search space becomes larger. Comparing to the algorithms based on dancing links, the MIP solver SCIP can deal with a larger scale. We note that we do not need the optimization function of the MIP solver in rep-tile. When we use SAT-based solvers clingo and NaPS, the range that can handle is much wider than the other problem solvers.

The details of each experiment are described below, however, there are differences in resources depending on problem solvers. This is because the authors split up to perform experiments that was good at each tool. The difference in computation results due to the difference in resources is considered to be tens to hundreds of times, however, considering the scale of the problem that increases exponentially and the actual computation results in Tables 2, 3, and 4, it can be seen that the differences of these constant factors do not affect our conclusion. The following are the details for each experimental environment.

3.1 Puzzle solvers

BurrTools $0.6 .3^{1}$ is widely recognized as the standard puzzle solver in the puzzle society. It supports a variety of grids and also supports 2D and 3D for puzzles that ask to pack a given set of pieces into

[^1]| k (Solution?) | $6(\times)$ | $7(\times)$ | $8(\checkmark)$ | $9(\checkmark)$ | $10(\times)$ | $11(\times)$ | $12(\checkmark)$ | $13(\checkmark)$ | $14(\times)$ | $15(\checkmark)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BurrTools 0.6.3 | <1 | 960 | 172800 | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| DLX(1st solution) | <1 | <1 | <1 | <1 | $?$ | $?$ | <1 | $?$ | $?$ | $?$ |
| DLX(all solutions) | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| DLZ(1st solution) | <1 | <1 | <1 | <1 | <1 | 102 | <1 | 20 | $?$ | $?$ |
| DLZ(all solutions) | $?$ | $?$ | <1 | <1 | $?$ | $?$ | OF | OF | $?$ | $?$ |
| SCIP 7.0.2 | 1 | 2 | 43 | 13 | 11 | 259200 | $?$ | $?$ | $?$ | $?$ |
| clingo 5.4.0 | <1 | <1 | <1 | 1 | 3 | 4 | 11 | 37 | 97 | 372 |
| NaPS 1.02b2 | <1 | <1 | <1 | <1 | 2 | 3 | 10 | 14 | 671 | 688 |
| k (Solution?) | $16(\checkmark)$ | $17(\checkmark)$ | $18(?)$ | $19(\checkmark)$ | $20(\checkmark)$ | $21(\checkmark)$ | $22(?)$ | $23(\checkmark)$ | $24(\checkmark)$ | $25(\checkmark)$ |
| clingo 5.4.0 | 244 | 134 | $?$ | 18022 | 6498 | $?$ | $?$ | $?$ | $?$ | $?$ |
| NaPS 1.02b2 | 316 | 505 | $?$ | 7455 | 6249 | 8485 | $?$ | 47550 | 131900 | 146200 |

Table 4: Time (sec.) for deciding if \because is a rep-tile of rep- k^{2}
a given frame (without overlapping or gaps). According to the web page of BurrTools, it is based on the data structure dancing links proposed by Knuth, who wrote a 270-page textbook [5]. Dancing links is a data structure for efficiently performing backtracking in a tree search by depth-first search. In the literature [5], many examples are taken from famous puzzles as applications of backtracking in search trees. In fact, the polyomino packing puzzle, which is essentially the same as the rep-tile, is also taken up in detail as an example. In our experiments, the machine used has an Intel Core i5-7300U (2.60 GHz) CPU and 8 GB of RAM. It is the limit of analysis for $k=8$, namely, the rep-tile of rep- 64 in each pattern.

BurrTools does various tunings internally, however, the details are not public. For comparison, we first implemented using dancing links as they are. The machine used has a CPU of Ryzen 7 5800X $(3.8 \mathrm{GHz})$ and 64 GB of RAM. The C program for the experiment used DLX1 ${ }^{2}$ developed by Knuth. When using DLX1, it turns out that $k=12$ is the limit in terms of finding a solution, and $k=6$ is difficult in terms of finding all solutions. Next, we tried to speed up the search by combining dancing links with ZDD. The C program for the experiment used DLX ${ }^{3}$ developed by Knuth. The word ZDD is an abbreviation for Zero-suppressed Binary Decision Diagram, and it is a data structure that shares subtree structures that appear in common in the binary decision tree. In particular, the memory efficiency is further improved compared to the normal BDD by not maintaining the path when the result becomes 0 (see [7] for details). If ZDD is used in a tree search like our problem, since it is not necessary to repeatedly search the already searched subtree, a significant speedup can be expected. On the other hand, it is necessary to store all the subtrees once searched in the cache, and hence the memory efficiency is worse than the depth-first search tree. By speeding up using ZDD, it is possible to achieve up to $k=13$ in the sense of finding a solution, and $k=9$ for the F -shape and $k=12$ for the J-shape in the sense of finding all the solutions. However, when the scale was larger than that, the search could not be completed due to lack of memory.

3.2 MIP solver

As the MIP solver, SCIP 7.0.2 ${ }_{4}^{4}$ was used in this research. The way of modeling is as introduced in Section 2. SCIP requires a term for optimization, however, it is redundant in our model. Hence, we minimize the sum of binary variables as a dummy. Whenever it is feasible, the result comes to $n=k^{2}$, so it acts as a double check for the feasible solution.

The machine used in the experiment has an Intel Core i5-7300U (2.60 GHz) CPU and 8GB of RAM. Although the results a bit vary, it can be seen that the solvable range is wider than when BurrTools is used.

[^2]
3.3 SAT-based solvers

Some SAT-based solvers support Pseudo Boolean Constraints (PBs) (see [6] for details). All the constraints used in the above MIP solver are within the range of PB except for the optimization term. Here, the optimization term in the MIP solver was redundant information when finding solutions of the rep tile. Therefore, when the optimization term is deleted from the constraint descriptions used in the above MIP solver, it can be solved by the SAT-based solvers that can handle PBs as they are.

In this research, we used two typical SAT-based solvers for deciding satisfiability; clingo 5.4.0 5 and NaPS 1.02b2 ${ }^{6}$. The machine used to run clingo has an Intel Core i7 $(3.2 \mathrm{GHz}) \mathrm{CPU}$ and 64 GB of memory, and the machine used to run NaPS has a Core i3 $(3.8 \mathrm{GHz}) \mathrm{CPU}$ and 64 GB of memory. Each computation time corresponds to the time for finding the first solution in the other solvers. Even considering the differences among the execution environments, it can be concluded that the range that can be solved by the SAT-based solvers is dramatically expanded compared to the puzzle solver and the MIP solver.

3.4 How to count the number of solutions

From the experiments, it was found that the best method for determining the existence of the solution is to use the SAT-based solvers. The SAT-based solvers used in Section 3.3 have the function of finding all solutions in addition to determining whether or not it is satisfiable. However, it is not practical since it will take time due to the large number of solutions. On the other hand, the projected model counting solver GPMC ${ }^{7}$ cannot find a solution for given constraints in CNF, however, the number of solutions can be found at high speed.

Therefore, in order to compute the number of solutions, we first determine the satisfiability using NaPS, next convert the constraints described in PB to the CNF using the conversion function of NaPS if it is satisfiable. Then the number of models was counted by GPMC. (To be more precise, when PBs are converted to CNF, variables other than the binary variable of interest are also generated. Therefore, the GPMC projection model counting function is used to count only the number of satisfiable assignments to the variable of interest. We can count the number of satisfiable solutions by this way.)

Table 1 summarizes the number of solutions obtained by combining NaPS and GPMC in this way. The entry written as >0 in the table is the entry confirmed that the solution exists using NaPS, and the entry that specifically describes the number of solutions is the entry that was successfully counted by GPMC. The ? mark indicates that any solution could not be found after running NaPS for 2 days. Here, for the $k=16$ in stair-shape, a solution was found when the time limit was exceeded.

4 Analysis and New Solutions

As shown in Section 3, through this research, we were able to compute the number of solutions of reptile solutions up to a previously unknown size. Specifically, in each case, the existence of solutions was determined by NaPS, and the number of solutions was counted by GPMC. However, although the total number of solutions can be found with this method, the details of the solutions are not clear. In this section, we observe the solutions by NaPS and the number of solutions by GPMC, referring to the known results, and clarify the details of solutions for some k. As a result, we find new solutions that were not included in the known results at all. We will look at this in detail for each 6 -omino.

4.1 J-shape 6-omino

The following property is useful for analysis of J-shape 6 -omino (hereafter, we assume $k>1$ to simplify):
Lemma 2 Let k be an integer such that J-shape 6 -omino is a rep-tile of rep- k^{2}. Then k^{2} is an even number and any tiling by k^{2} copies of J-shape can be dissected into $k^{2} / 2$ 12-ominoes such that they consist of $\square \square \square$ and (or their mirror images).

[^3]Proof A J-shape piece P is concave. That is, it has a unit square not belonging to P but sharing three edges of P. To cover this unit square by the other J-shape, we have only two ways shown above. This implies the lemma.
We obtain a corollary by Lemma 2 .
Corollary 3 For any odd number $n>1$, a J-shape 6 -omino is not a rep-tile of rep- n. Therefore, for any odd number $k>1$, a J-shape 6 -omino is not a rep-tile of rep- k^{2}.

By Theorem 1 and Corollary 3 , it is sufficient to check whether a J-shape 6 -omino is a rep-tile of rep- k^{2} only for even k. Moreover, by Lemma 2, we can decide if a J-shape 6 -omino is a rep-tile by checking of tiling using only two 12-omino pieces $\square \square$ and $\square \square$. Using this method, we can complete the computation for k larger than the experiments in Section 3. By combining the arguments with the results in Section (3) we obtain the following theorem for the J-shape 6-omino:

Figure 3: Construction of tiling based Figure 4: Part of construction of tiling based on on rectangles of size 3×4 for $k=6 \quad$ rectangles of size 3×4 for $k=12$

Theorem 4 For a rep-tile of the J-shape 6 -omino of rep- k^{2}, we have the following:
(0) There exists no rep-tile of rep- k^{2} for an odd number k (except $k=1$). There exists no rep-tile of rep- k^{2} for $k=2,4,8,10,14,16,20,22$.
(1) Case $k=6$: All solutions can be obtained by the following way: We first dissect the 216-omino P into 18 rectangles of size 3×4 as shown in Figure 3 and then replace each rectangle by $\square \square$ or its mirror image.
(2) Case $k=12$: All solutions can be obtained by the following way: We first dissect the 864-omino P into 72 rectangles of size 3×4 and then replace each rectangle by $\quad \square \square$ or its mirror image.
(3) Case $k=18,24$: There are some solutions that contain both

Proof (0) We can obtain the results for odd k by Corollary 3 . The search results by SAT-based solvers in Table 3 give us the results for $k \leq 20$. By Lemma 2, we perform the search of tiling by copies of two 12 -ominoes for larger k. Using NaPS, we confirmed that there is no rep-tile of rep- k^{2} for $k=22$.
(1) Case $k=6$: The known solutions for the J-shape 6 -omino on the web page [4] are based on the arrangement of the rectangle $\square \square$. In fact, when $k=6$, the pattern in which 18 rectangles are arranged (Figure 3) is shown on the web page. There are two ways to dissect each rectangle to a pair of two copies of the J-shape 6-omino; \square or its mirror image. When $k=6$, the number 262144 of solutions matches $2^{18}=262144$. That is, in the case of $k=6$, there are at least 2^{18} solutions based on
the dissection into the rectangles in Figure 3, which is equal to the number of solutions actually counted by GPMC. Since they match, we can guarantee that no other solution exists.
(2) When $k=12$, the number of solutions is 545409716939029673955819520 . This number is much larger than 2^{72}, which is obtained by the same dissection of the case $k=6$. The reason can be expressed as follows. We first consider a square corresponding to the unit square of the J-shape polyomino P. In the rep-tile for $k=12$, the square is of size 12×12. Then we can tile this square by tiling 12 rectangles of size 3×4 in vertical or horizontal. (We note that we have no such a choice in Figure 3 , and the dissection is uniquely determined.) Therefore, we have to consider the number of ways of tiling of rectangles in vertical or horizontal. Moreover, when we consider a large rectangle obtained by joining these squares of size 12×12, there are variants of tiling of rectangles of size 3×4. A concrete example is shown in Figure 4 . In this example, the rectangle of size 12×24 in P is dissected into rectangles of size 12×3, 12×12, and 12×9. It is not easy to count the number of distinct dissections of P into rectangles of size 3×4. Therefore, we first count the number of dissections of P for $k=12$ into rectangles of size 3×4 (and 4×3) by GPMC, which finishes soon. As a result, the number of ways of dissections is 115495 . Here, we can confirm that $545409716939029673955819520=115495 \times 2^{72}$. Therefore, every rep-tile for $k=12$ can be obtained by two steps; first, dissect P into rectangles of size 3×4 and 4×3, and then replace each of them by $\square \square$ or its mirror image.

Figure 5: A rep-tile of rep- 18^{2} of J-shape 6-omino Figure 6: A rep-tile of rep- 24^{2} of J -shape 6 -omino that contains
 that contains

(3) By Lemma 2 we can decide if there is a solution that uses in a tiling by J-shape 6 -omino by searching using two types of 12 -ominoes. Moreover, when we specify the range of the number of copies of each of two 12 -ominoes, we can decide if there is a solution that contains both $\square \square$ and As a result, we found that there were such solutions for $k=18,24$; see Figure 5 and Figure 6 .

We note that the solutions that contain are new solutions not included in previously known results. So far, in the case $k=18$, there are solutions that contain x copies of for every even number x from 2 to 46 . There is no such solution when $x \geq 47$. That is, all solutions containing we found have even number of pairs of this form. It is not known the details for $k=18$: For example,
the number of solutions in the case $k=18$, whether there exists a solution that contains an odd number copies of \leftrightarrows, and how many solutions that contain are not known. We conjecture that there are solutions that contain

for $k>24$.

4.2 F-shape 6-omino

The known rep-tiles of the F-shape 6 -omino are a bit complicated, however, the solutions posted on the web page [4] are explained as follows: We first combine two copies of the F-shape 6 -omino to form H, , पु, and , then next arrange them appropriately, and finally place one copy of the F-shape 6-omino if necessary. In this placement, \quad IS is a rectangle, hence replacing it with its mirror image gives us many distinct solutions.

We summarize our results in the following theorem. Among them, we found new types of solutions that cannot be explained in the way of previously known results for $k=8,15,16,17$.

Theorem 5 For a rep-tile of the F-shape 6 -omino of rep- k^{2}, we have the following:
(0) There exists no rep-tile of rep- k^{2} for $k=2,3,4,5,6,7,10,11,14$.
(1) Case $k=8$: All solutions can be obtained by the following way: We first dissect the 384-omino P in one of the ways shown in Figure 7 , and then replace each rectangle by \rightarrow B
(2) Case $k=9$: All solutions can be obtained by the following way: We first dissect the 486-omino P in one of the ways shown in Figure 8 and Figure 9 and then replace each rectangle by $\because \leq$ or its mirror image.
(3) Case $k=12,13,19,20,21,23,24,25$: There exist rep-tiles of rep- k^{2}. The number of solutions in the case $k=12,13$ can be found in Table 1 .
(4) Case $k=15,16,17$: There exist rep-tiles of rep- k^{2} that include the pattern given in Figure 10.

Proof (0), (3) We can determine the (non)existence of rep-tiles up to $k=25$ by SAT-based solvers. By using GPMC, we can count the number of solutions (in the existence case) for each k up to 13.
(1), (2) By using NaPS and GPMC, we obtain that the numbers of solutions for $k=8$ and $k=9$ are 1358954496 and 51539607552 , respectively. We then enumerate all non-concave polyominoes that can be obtained by combining two or three copies of the F-shape 6 -omino, and find all tilings using them. After that, we count the number of ways of tilings that can be obtained by filling each rectangle of size 3×4 by \because or its mirror image. The numbers of tilings should be at most 1358954496 and 51539607552 for $k=8$ and $k=9$, respectively. In fact, we found that we have already listed all tilings since they are equal in both cases. The patterns of solutions are listed in Figure 7, Figure 8, and Figure 9, We use the all non-concave 18 -polyominoes obtained by combining three copies of the F-shape 6 -omino, however, in fact, only and are required to enumerate all solutions for $k=8$ and $k=9$

Precisely, when $k=8$, there exist six essentially different dissections. When we consider replacing each rectangle by $\because \square$ or its mirror image, we obtain the number of solutions given by Figure 7 is equal to $2^{24}+2 \times 2^{26}+2^{27}+2 \times 2^{29}=1358954496$ that coincident with the number of solutions obtained by running NaPS and GPMC. When $k=9$, we have fourteen essentially different dissections. By considering the numbers of rectangles in these dissections, the total number of solutions given by Figure 8 and Figure 9 is $8 \times 2^{30}+2 \times 2^{32}+4 \times 2^{33}=51539607552$ that contains all solutions obtained by NaPS and GPMC.

Checking all of these solutions, we can confirm that we can construct any rep-tile for $k=9$ by combining ,

Figure 7: All solutions of rep-tiles of rep- 8^{2} for the F-shape 6-omino (we can obtain many variants when we fill each rectangle $\because \square$ or its mirror image)

Figure 8: All solutions of rep-tiles of rep- 9^{2} for the F-shape 6 -omino ($1 / 2$)

Moreover, the last one copy is added to form $\sqrt[\square]{\square}$ or $\sqrt[\square]{\square}$. Concretely, $\sqrt[\square]{5}$ is used in the eight patterns in Figure 88 and is used in the six patterns in Figure 9 . That is, when $k=9$, we can construct any solution by tiling some copies of $\because, ~$, one copy of $\sqrt{\square}$ or way of the previously known results.

However, when $k=8$, we cannot construct all solutions in the way of the previously known results. More precisely, the first two patterns among six patterns in Figure 7 can be represented in this way, however, the next three patterns require to add two copies of the F -shape 6 -omino. Moreover, the last pattern requires to add four copies of the F-shape 6 -omino. That is, among six patterns in Figure 7 there are only two patterns that can be represented in the way of the previously known results and the other four patterns give us new solutions. Especially, in the last two patterns in Figure 7, we have to place both copies of $\sqrt[\square]{\square}$ and $\sqrt[\square]{\square}$ after placements of copies of $\because \square, \square, \square$, and

Figure 9: All solutions of rep-tiles of rep- 9^{2} for the F-shape 6 -domino $(2 / 2)$

पुज.

(4) In the case of $k=8$ or $k=9$, we can construct all rep-tiles by tiling non-concave polyominoes obtained by combining two or three copies of the F-shape 6 -omino. Then, is this common in all the rep-tiles by the F -shape 6 -domino? It is not the case. We first note that there exist patterns that require four or more copies of the F-shape 6 -domino. A concrete example is given in Figure 10 . (There are no rep-tile containing such a pattern in the previously known results.) We searched rep-tiles that require copies of the pattern in Figure 10 with non-concave polyominoes obtained by combining two or three copies of the F-shape 6 -omino. Then there are some solutions (Figure 11) containing the pattern in Figure 10 for $k=15,16,17$. They are completely different rep-tiles from the previously known solutions.

4.3 Stair-shape 6-omino

Since the stair-shape 6 -domino is not concave (in our definition) contrast with the J-shape and F-shape 6 -ominoes, it is difficult to search its rep-tile pattern systematically. However, by generating the unit patterns obtained by combining a few copies of the stair-shape to cancel the zig-zag part of it and tiling the copies of these unit patterns, we succeeded to generate all patterns of solutions for $k=11$. The results can be summarized as follows:

Theorem 6 For a rep-tile of the stair-shape 6 -omino of rep- k^{2}, we have the following:
(0) There exists no rep-tile of rep- k^{2} for $k=2,3,4,5,6,7,8,9,10,14,15,16,17,18$.
(1) Case $k=11$: All solutions can be obtained by the following way: We first dissect the 726 -omino P

(or their mirror images). We note that the previously known results are included in Figure 12 (a), and the patterns in Figure $12(b)(c)$ are new solutions that we found in this research.
(2) Case $k=12,13,23,24,25$: There exist rep-tiles of rep- k^{2}. The number of solutions in the case $k=12,13$ can be found in Table 1 .

Proof We omit all the cases except $k=11$ since they were obtained by NaPS and GPMC. (Here we note that $k=16$ is an exception: the solution in this case could not be obtained by the time limit, however, we could obtain it when we extend the time limit.) When $k=11$, we perform the search by using three

12-ominoes obtained by

 . We have three groups by the search.

The first pattern is given in Figure 12 (a): It uses 59 copies of 4 and one copy of There are three ways of tiling the left upper green rectangle by 11 rectangles of size 3×4, and six ways of tiling the blue polygon by 23 rectangles of size 3×4. (For the latter blue polygon, there are three ways of

Figure 10: A nonconcave 24 -omino that requires four copies of the Fshape 6 -omino (any removal of one or two copies makes concave)

Figure 11: Examples of rep-tiles that contain the pattern in Figure 10 for $k=15,16,17$
tiling of the left upper blue rectangle of size 11×12, four ways of tiling of the right lower blue rectangle of size 12×13, and one in common, which implies six ways in total.) Since we can make a mirror image with respect to the line of 45 degrees, the total number of solutions in the pattern in Figure 12 (a) is $2 \times 18 \times 2^{59}=20752587082923245568$.

The next pattern is given in Figure 12 (b), which uses 58 copies of $\boxed{4}$, one copy of
 and one copy of . In this case, there are three ways to tile the left upper green rectangle, two ways to tile the central brown rectangle, and three ways to tile the lower blue rectangle. The last pattern in Figure $\sqrt[12]{ }(\mathrm{c})$ also uses 58 copies of $\boxed{4}$, one copy of $\boxed{\square}$, and one copy of three ways to tile the green rectangle. In total, the number of solutions in patterns in Figure 12(b) and Figure 12 (c) is $2 \times(18+3) \times 2^{58}=12105675798371893248$.

Therefore, when we add all solutions in the patterns in Figure 12 (a)(b)(c), it makes $42 \times 2^{58}+36 \times 2^{59}=$

Figure 12: Three solutions of the stair-shape 6 -omino for $k=11$

32858262881295138816 , which is equal to the number of solutions in Table 1. Therefore, we cover all rep-tiles for $k=11$.

Acknowledgments

This research is partially supported by Kakenhi (17K00017, 18H04091, 20H05964, 21K11757).

References

[1] Solomon W. Golomb. Polyominoes: the Fascinating New Recreation in Mathematics, Charles Scribner's Sons, 1965.
[2] Martin Gardner. Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi: Martin Gardner's First Book of Mathematical Puzzles and Games, Cambridge University Press, 2008.
[3] Martin Gardner. Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging, Cambridge University Press, 2014.
[4] Andrew L. Clarke. Polyomino Reptiles. http://www.recmath.org/PolyPages/PolyPages/index.htm? Rep06.htm, accessed in August, 2021.
[5] Donald E. Knuth. The Art of Computer Programming: Dancing Liniks, Volume 4, pre-fascicle 5c, September, 2019.
[6] Donald E. Knuth. The Art of Computer Programming: Satisfiability, Volume 4, Fascicle 6, 2015.
[7] Donald E. Knuth. The Art of Computer Programming: Bitwise Tricks 8 Techniques; Binary Decision Diagrams, Volume 4, Fascicle 1, 2009.

[^0]: *Nagoya University, Japan. \{banbara,k-hasimt,sakai\}@i.nagoya-u.ac.jp
 ${ }^{\dagger}$ Hokkaido University, Japan. horiyama@ist.hokudai.ac.jp
 ${ }^{\ddagger}$ Kyoto University, Japan. minato@i.kyoto-u.ac.jp
 §Japan Advanced Institute of Science and Technology, Japan. \{s2010142, uehara\}@jaist.ac.jp
 $\mathbb{I}_{\text {NTT }}$ Corporation, Japan. \{masaaki.nishino.uh, norihito.yasuda.hn\}@hco.ntt.co.jp
 \| Osaka Prefecture University, Japan. uno@cs.osakafu-u.ac.jp

[^1]: ${ }^{1}$ http://burrtools.sourceforge.net/

[^2]: ${ }^{2}$ See
 https://www-cs-faculty.stanford.edu/~knuth/programs.html
 https://www-cs-faculty.stanford.edu/~knuth/programs/dlx1.w for the details.
 ${ }^{3}$ https://www-cs-faculty.stanford.edu/~knuth/programs/dlx6.w
 ${ }^{4}$ https://www.scipopt.org/

[^3]: 5 https://potassco.org/clingo/
 6 https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
 7 https://www.trs.cm.is.nagoya-u.ac.jp/projects/PMC/

