Belfast Climate Crisis Committee

Coastal Shoreline Stabilization

July 6, 2022

William B. Gartley, P.E. wgartley@gartleydorsky.com 207-236-4365

Preliminary Site Assessment

- Is there imminent danger to persons or property?
- Owner's needs and budget
- Height and steepness of existing slope
- Construction access/permanent pedestrian access
- Ground cover
- Conditions on abutting properties
- Global Stability Site History Geotechnical Engineer

Preliminary Site Assessment

- Hydrology
 - Surface water
 - Ground water
 - Outlet Pipes

- Intertidal Assessment
 - Ledge or Rocky
 - Mudflats
 - Vegetation
 - Fetch

Imminent danger to life and property. Rockport

Gradual undercutting due to ice damage and lower energy wave action. *Round Pond*

Grass clippings hindered vegetation, resulted in significant localized failure. *Cushing*

Homeowners sometimes use other methods to "control" erosion! *Friendship*

Freeze/thaw action crumbling ledge.

Owl's Head

Previous site after stabilization. *Owl's Head*

Significant failure Rockland

Field Survey

- Existing conditions survey and topography
 - Structures
 - Property lines if possible
 - Drainage features (pipe outfalls, swales, streams, etc.)
 - Significant trees
 - Significant intertidal features (spartina or ledge)
- Regulatory Tide Lines
 - Highest Annual Tide (HAT)
 - Mean High Water (MHW) (Elevations published by
 - Mean Low Water (MLW) NOAA)

Regulatory Considerations

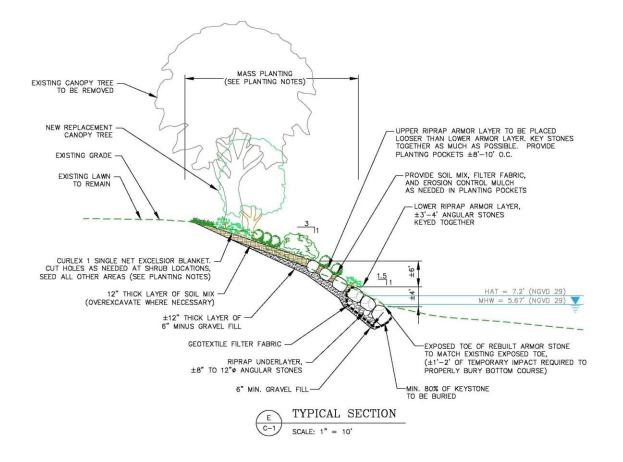
- M.D.E.P. Natural Resources Protection Act
 - Inland Fisheries and Wildlife
 - Department of Marine Resources
- U. S. Army Corps Cat. 2 Programmatic General Permit
- Municipal
 - Shoreland Zoning
 - CEO
 - Is Building Permit needed?
 - Is Planning Board review needed?
 - Is Floodplain Permit needed?

- 1. Armoring Base
- 2. Riprap Slope
- 3. Surface Water
- 4. Ground Water
- 5. Vegetation

- Armoring Base
 - Heavy armoring to protect against wave action and to provide a structural base for the upper portion of the stabilization
 - Typically stones are not less than 3'-4' in diameter
 - First course should be buried approx. 3' (or pinned)
 - Slope: Goal is no greater than 1.5H:1V
 - Absolutely no steeper than 1H:1V where needed
 - Prefer slopes shallower than 1.5H:1V where possible
 - Slope Preparation:
 - Armor stone layer
 - Underlayer of +/-12" thickness of 6" blasted ledge
 - Geotextile filter fabric
 - Gravel/sand layer if native material is clay or clay/silt

- Riprap Slope
 - Used to stabilize slope above armored base
 - Stone size may gradually decrease up-slope from armored base
 - Surface stones typically never less than 10" to 12" diameter, with smaller stones used to chink voids
 - Slope preparation same as for armored base, but begins transition to vegetated area above
- Surface Water
 - Intercept surface water when feasible and direct to stabilized discharge location
 - Outlet foundation drains and roof runoff to stabilized discharge location

- Ground Water
 - Provide interceptor trench when feasible. Considerations include:
 - Significant tree roots
 - Structures
 - Septic fields or other
 - Must be primary consideration when choosing:
 - Stabilization material (Stone vs. vegetation)
 - Slope steepness
 - Slope preparation

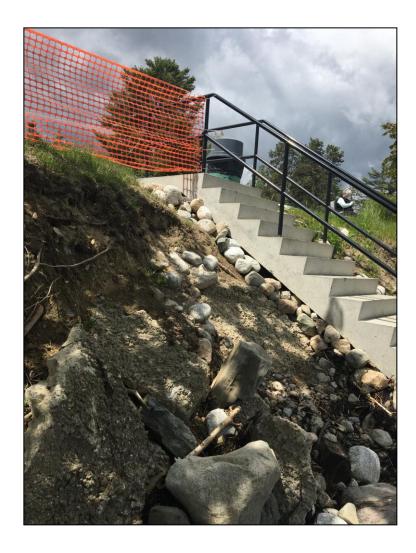


Significant trees and septic system prevent curtain drainage Owl's Head

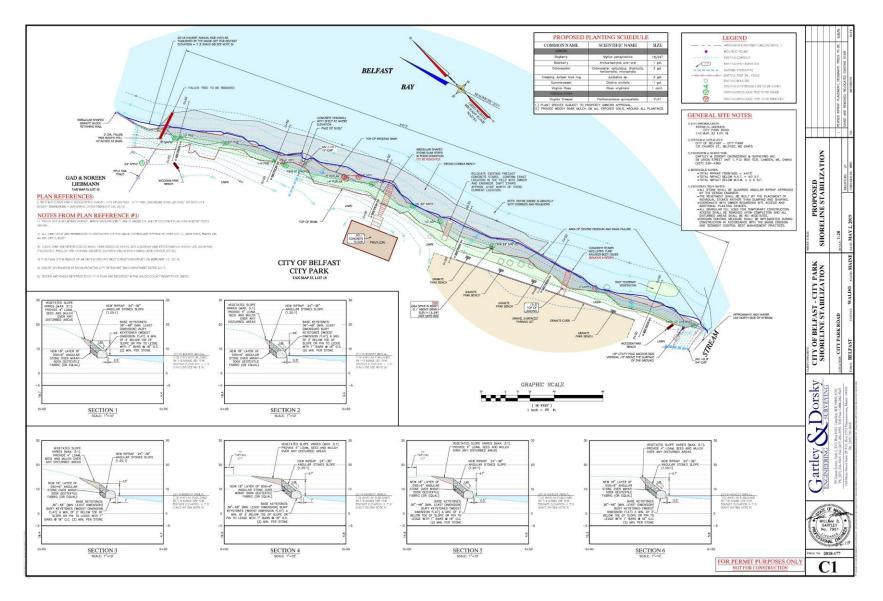
- Vegetation
 - Protect existing vegetation when possible, except when large unstable trees threaten further failures
 - Cut back slope as much as possible (3H:1V preferred)
 - Provide organic layer, 6" minimum
 - Drainage
 - Choose native, exposure-tolerant species
 - Provide heavy woody mulch between plantings
 - Protect seeded areas with erosion control fabric
 - If steeper than 3H:1V, consider planting shrubs through erosion control fabric and seeding throughout, or adding some random stones to help hold soils and prevent sliding
 - Temporary irrigation
 - Replacement Trees (shoreland zoning)

Armor layer showing riprap underlayer and geotextile. *Lincolnville*

Design section optimized for planting South Thomaston


Design Goal

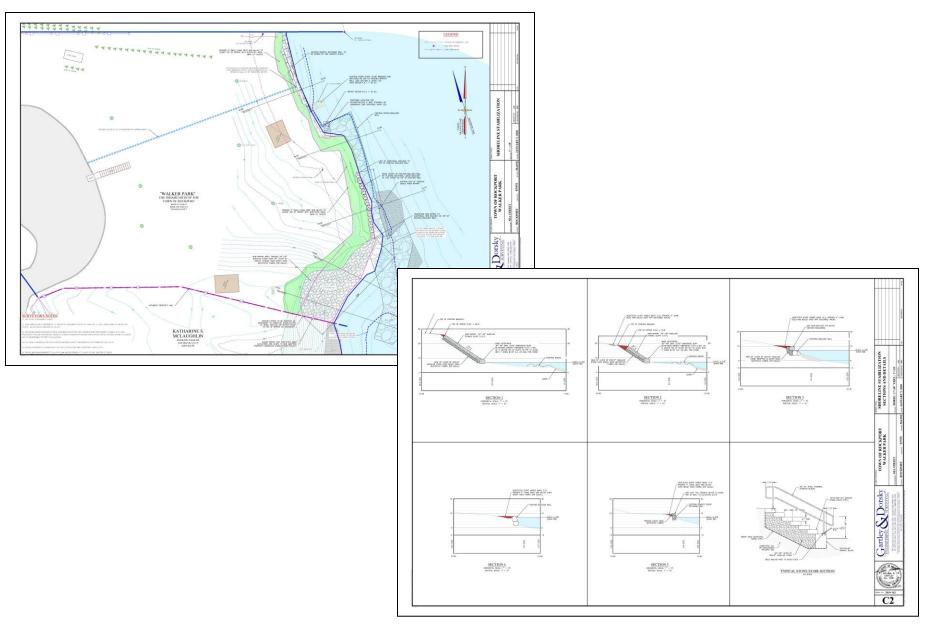
- The ultimate goal in designing coastal stabilization projects is to use a method that:
 - Stabilizes the site as permanently as possible
 - Is cost effective
 - Is aesthetically pleasing to both the owner and general public
 - Is as environmentally friendly as possible to both the intertidal and riparian habitats


<u>City of Belfast – City Park</u>

City of Belfast - City Park

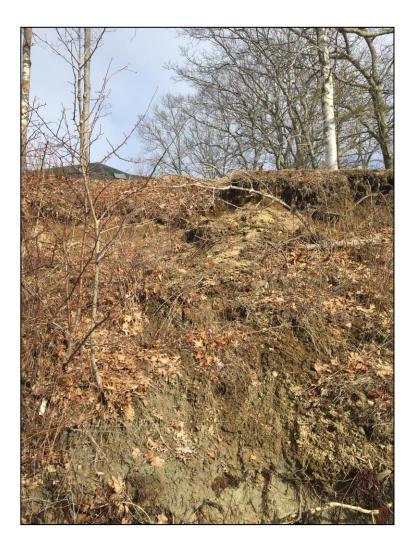
<u>City of Belfast – City Park</u>

Completed in 2019 Construction Cost: \$80,000-\$120,000


Town of Rockport – Walker Park

Town of Rockport – Walker Park

Town of Rockport – Walker Park



Completed in 2020 Construction Cost: \$40,000

Belfast Shoreline Stabilization

Belfast Shoreline Stabilization

Belfast Shoreline Stabilization

Completed in 2018 Construction Cost: \$48,000-\$76,000

Belfast Climate Crisis Committee

Coastal Shoreline Stabilization

July 6, 2022

William B. Gartley, P.E. wgartley@gartleydorsky.com 207-236-4365