Radiative Transfer in the Atmosphere

Lectures in Benevento June 2007

Paul Menzel UW/CIMSS/AOS

Using wavelengths

 $c_2/\lambda T$

Planck's Law

 $B(\lambda,T) = c_1 / \lambda^5 / [e -1] \quad (mW/m^2/ster/cm)$

where

λ = wavelengths in cm T = temperature of emitting surface (deg K) c₁ = 1.191044 x 10-5 (mW/m²/ster/cm⁻⁴) c₂ = 1.438769 (cm deg K)

Wien's Law $dB(\lambda_{max},T) / d\lambda = 0$ where $\lambda(max) = .2897/T$ indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)with temperature increase. Note $B(\lambda_{max},T) \sim T^5$.

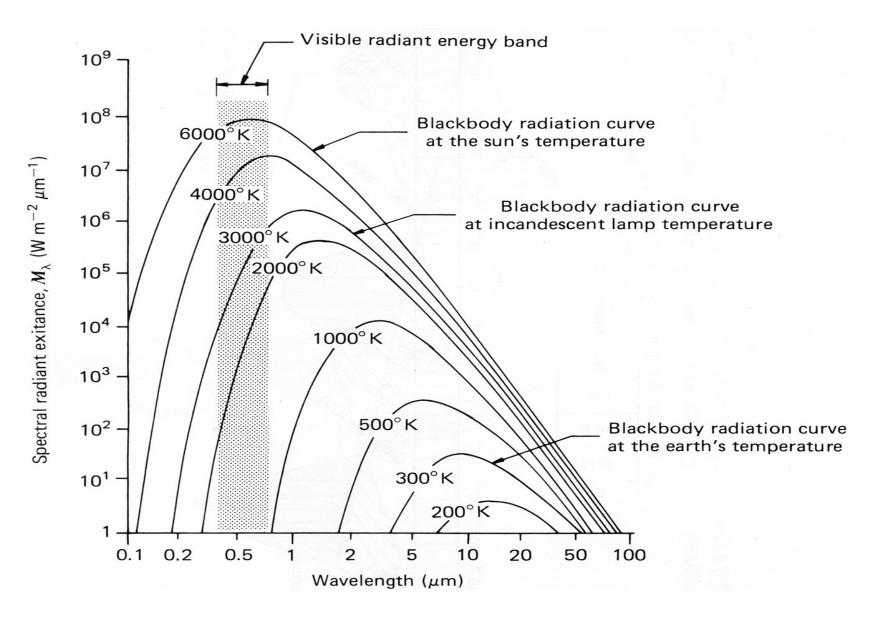
Stefan-Boltzmann Law $E = \pi \int_{0}^{\infty} B(\lambda,T) d\lambda = \sigma T^4$, where $\sigma = 5.67 \text{ x } 10-8 \text{ W/m2/deg4}$.

states that irradiance of a black body (area under Planck curve) is proportional to T⁴.

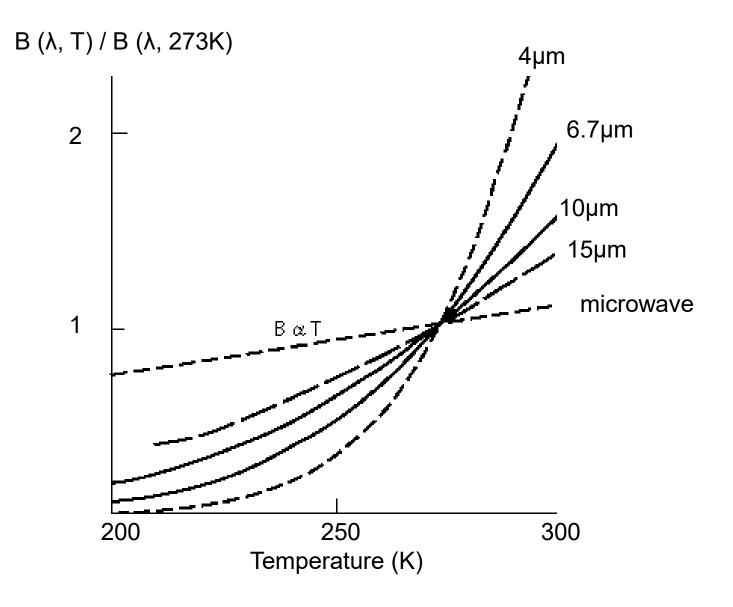
Brightness Temperature

 $T = c_2 / \left[\lambda \ln(\frac{c_1}{-+1}) \right] \text{ is determined by inverting Planck function} \\ \frac{\lambda^5 B_{\lambda}}{\lambda^5 B_{\lambda}}$

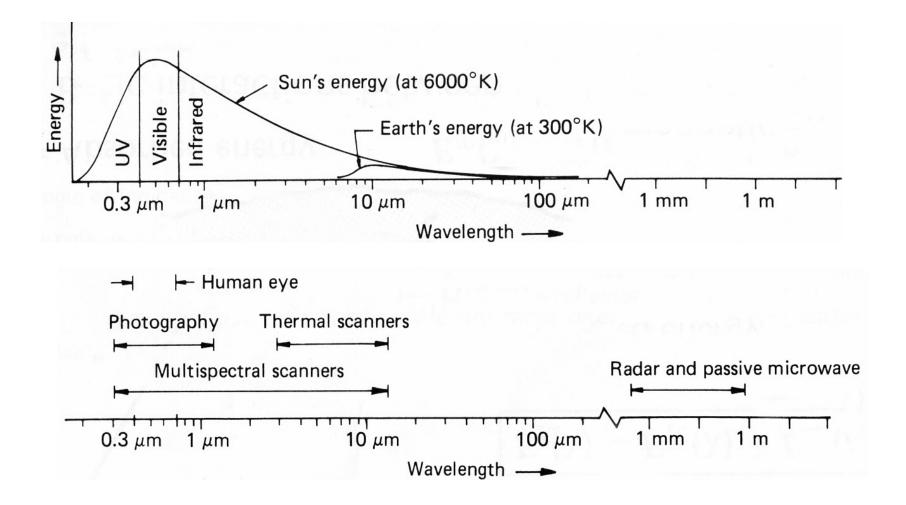
Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

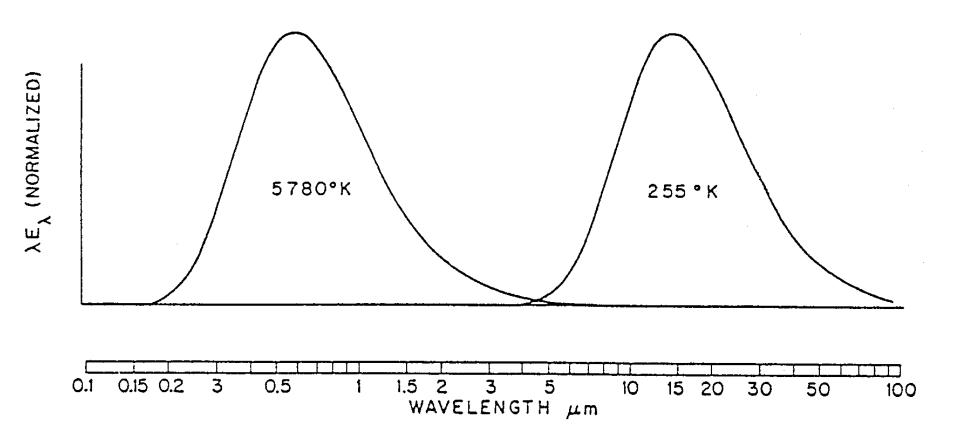


Temperature Sensitivity of $B(\lambda,T)$ for typical earth scene temperatures



Spectral Characteristics of Energy Sources and Sensing Systems





Normalized black body spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength so that the area under the curves is proportional to irradiance.

Relevant Material in Applications of Meteorological Satellites

CHAPTER 2 - NATURE OF RADIATION 2-1 2.1 Remote Sensing of Radiation 2.2 **Basic Units** 2-1 **Definitions of Radiation** 2.3 2-2 **Related Derivations** 2.5 2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1 Absorption and Emission 3-1 3.2 Conservation of Energy 3-1 Planetary Albedo 3.3 3-2 Selective Absorption and Emission 3.4 3-2 3.7 Summary of Interactions between Radiation and Matter 3-6 3.8 Beer's Law and Schwarzchild's Equation 3-7 3.9 Atmospheric Scattering 3-9 The Solar Spectrum 3-11 3.10 3.11 Composition of the Earth's Atmosphere 3-11 Atmospheric Absorption and Emission of Solar Radiation 3.12 3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation 3-12 Atmospheric Absorption Bands in the IR Spectrum 3.14 3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum 3-14 3.16 **Remote Sensing Regions** 3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE)

5.1Derivation of RTE5-15.10Microwave Form of RTE5-28

Emission, Absorption, Reflection, and Scattering

Blackbody radiation B_{λ} represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength.

Emissivity ε_{λ} is defined as the fraction of emitted radiation R_{λ} to Blackbody radiation,

$$\varepsilon_{\lambda} = R_{\lambda} / B_{\lambda}$$

In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so

 $a_{\lambda} = \varepsilon_{\lambda}$.

Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters.

If a_{λ} , r_{λ} , and τ_{λ} represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says

$$a_\lambda + r_\lambda + \tau_\lambda = 1 \ .$$

For a blackbody $a_{\lambda} = 1$, it follows that $r_{\lambda} = 0$ and $\tau_{\lambda} = 0$ for blackbody radiation. Also, for a perfect window $\tau_{\lambda} = 1$, $a_{\lambda} = 0$ and $r_{\lambda} = 0$. For any opaque surface $\tau_{\lambda} = 0$, so radiation is either absorbed or reflected $a_{\lambda} + r_{\lambda} = 1$.

At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).

- $a_{\lambda}R_{\lambda} = R_{\lambda} - r_{\lambda}R_{\lambda} - \tau_{\lambda}R_{\lambda}$ "ENERGY CONSERVATION"

 $r_{\lambda}R_{\lambda}$

 $\tau_{\lambda} \mathsf{R}_{\lambda}$

R

 $\epsilon_{\lambda} B_{\lambda}(T)$

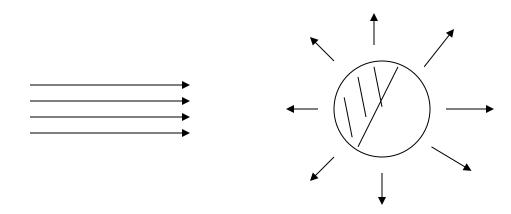
Planetary Albedo

Planetary albedo is defined as the fraction of the total incident solar irradiance, S, that is reflected back into space. Radiation balance then requires that the absorbed solar irradiance is given by

E = (1 - A) S/4.

The factor of one-fourth arises because the cross sectional area of the earth disc to solar radiation, πr^2 , is one-fourth the earth radiating surface, $4\pi r^2$. Thus recalling that S = 1380 Wm⁻², if the earth albedo is 30 percent,

then $E = 241 \text{ Wm}^{-2}$.



Selective Absorption and Transmission

Assume that the earth behaves like a blackbody and that the atmosphere has an absorptivity a_s for incoming solar radiation and a_L for outgoing longwave radiation. Let Y_a be the irradiance emitted by the atmosphere (both upward and downward); Y_s the irradiance emitted from the earth's surface; and E the solar irradiance absorbed by the earth-atmosphere system. Then, radiative equilibrium requires

E - (1- a_L) Y_s - $Y_a = 0$, at the top of the atmosphere, (1- a_s) E - Y_s + $Y_a = 0$, at the surface.

Solving yields

$$Y_{s} = \frac{(2-a_{s})}{(2-a_{L})} \quad \text{E, and}$$
$$Y_{a} = \frac{(2-a_{L}) - (1-a_{L})(2-a_{s})}{(2-a_{L})} \quad \text{E.}$$

Since $a_L > a_S$, the irradiance and hence the radiative equilibrium temperature at the earth surface is increased by the presence of the atmosphere. With $a_L = .8$ and $a_S = .1$ and E = 241 Wm⁻², Stefans Law yields a blackbody temperature at the surface of 286 K, in contrast to the 255 K it would be if the atmospheric absorptance was independent of wavelength ($a_S = a_L$). The atmospheric gray body temperature in this example turns out to be 245 K.

Incoming Outgoing IR solar $\downarrow E \uparrow (1-a_1) Y_s \uparrow Y_a$

top of the atmosphere

$$\downarrow (1-a_s) E \uparrow Y_s \qquad \downarrow Y_a$$

earth surface.

$$Y_{s} = \frac{(2-a_{s})}{(2-a_{L})} \quad E = \sigma T_{s}^{4}$$

Expanding on the previous example, let the atmosphere be represented by two layers and let us compute the vertical profile of radiative equilibrium temperature. For simplicity in our two layer atmosphere, let $a_s = 0$ and $a_L = a = .5$, u indicate upper layer, l indicate lower layer, and s denote the earth surface. Schematically we have:

↓E	\uparrow (1-a) ² Y _s	\uparrow (1-a) Y_1	\uparrow Y _u	
↓E	\uparrow (1-a) Y_s	\uparrow Y ₁	$\downarrow Y_u$	
↓E	\uparrow Y _s	\downarrow Y ₁	\downarrow (1-a) Y_u	

top of the atmosphere

middle of the atmosphere

earth surface.

Radiative equilibrium at each surface requires

$$\begin{split} E &= .25 \, Y_s \, + .5 \, Y_l + Y_u \, , \\ E &= .5 \, Y_s \, + \, Y_l \, - \, Y_u \, , \\ E &= \, Y_s \, - \, Y_l \, - .5 \, Y_u \, . \end{split}$$

Solving yields $Y_s = 1.6 \text{ E}$, $Y_1 = .5 \text{ E}$ and $Y_u = .33 \text{ E}$. The radiative equilibrium temperatures (blackbody at the surface and gray body in the atmosphere) are readily computed.

$$T_{s} = [1.6E / \sigma]^{1/4} = 287 \text{ K},$$

$$T_{1} = [0.5E / 0.5\sigma]^{1/4} = 255 \text{ K},$$

$$T_{u} = [0.33E / 0.5\sigma]^{1/4} = 231 \text{ K}.$$

Thus, a crude temperature profile emerges for this simple two-layer model of the atmosphere.

Transmittance

Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k_{λ}) at that wavelength. Beer's law indicates that transmittance decays exponentially with increasing path length

$$\tau_{\lambda} (z \to \infty) = e^{-k_{\lambda} u(z)}$$

where the path length is given by $u(z) = \int_{-\infty}^{\infty} \rho dz$.

 k_{λ} u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth σ_{λ} .

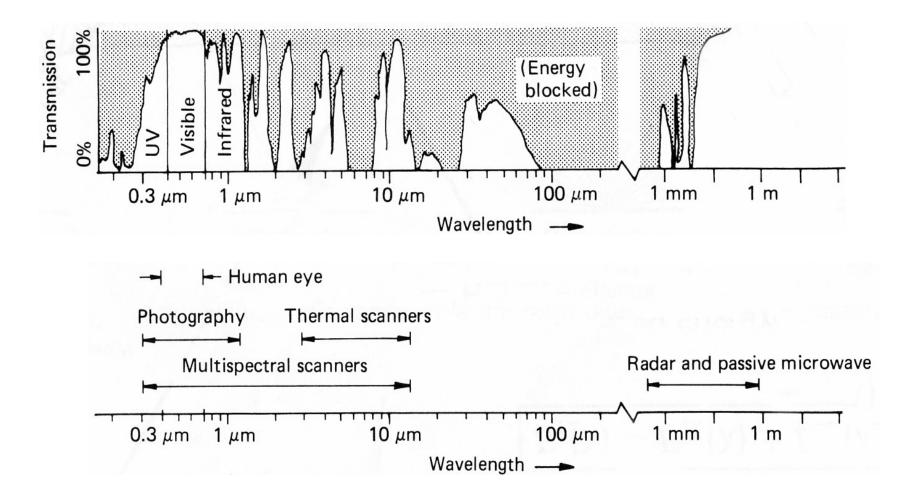
Ζ

Realizing that the hydrostatic equation implies $g \rho dz = -q dp$

where q is the mixing ratio and ρ is the density of the atmosphere, then

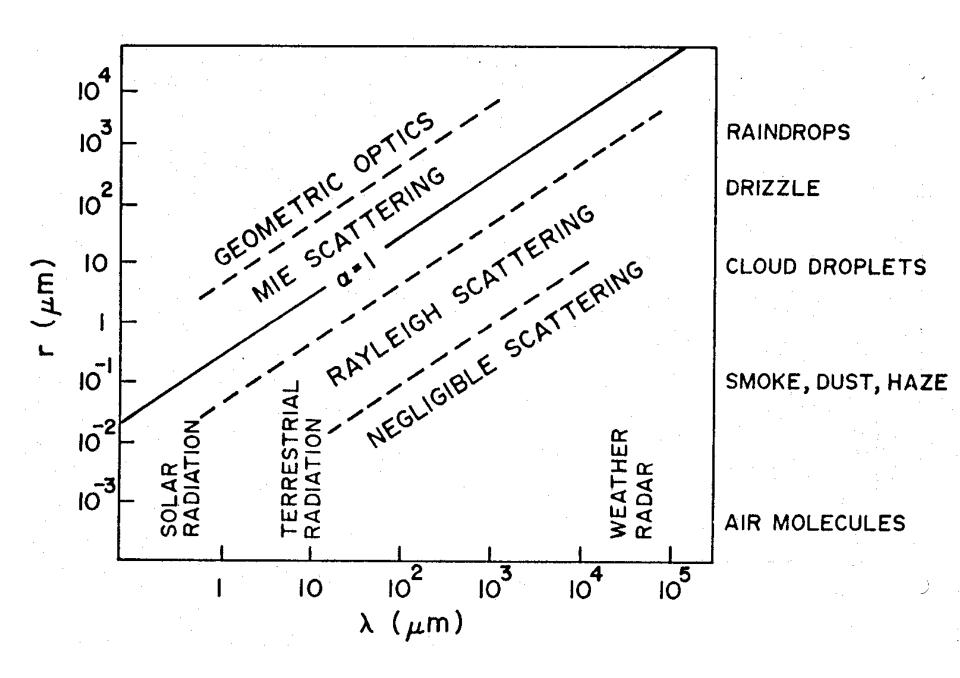
$$u(p) = \int_{0}^{p} q g^{-1} dp \quad \text{and} \quad \tau_{\lambda} (p \to o) = e^{-k_{\lambda} u(p)}$$

Spectral Characteristics of Atmospheric Transmission and Sensing Systems



Relative Effects of Radiative Processes

Sun - Earth - Atmosphere Energy System					
		Solar B	adiation	Terrestria	Radiation
		Absorption / Emission	Scattering	Absorption / Emission	Scattering
	Water	🗸 Small	🗸 Large	Moderate	Negligible
Clouds	lce	✓Variable	√Moderate	🗸 Small	✓Negligible
Molecules in the Atmosphere		🗸 Small	✓Moderate	🗸 Variable	✓Negligible
Aerosols in the Atmosphere		🗸 Small	✓Moderate	🗸 Variable	Negligible
	Land	🗸 Large	 Moderate 	🗸 Large	✓Negligible
Earth's Surface	Water	✓ Large	🗸 Small	🗸 Large	✓ Negligible
Snow/lee Variable V Large V Variable VIegligible					
↑ ↑ ↑ ·	<u>†</u> † 1	+ + + 1			h 🛉 👘
Earth					



Aerosol Size Distribution

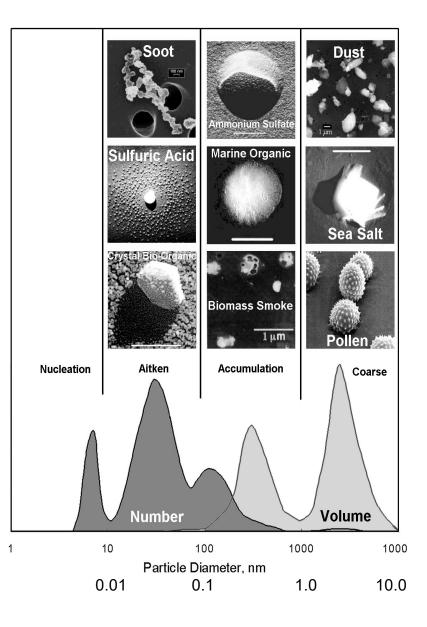
There are 3 modes :

- « **nucleation** »: radius is between 0.002 and 0.05 μm. They result from combustion processes, photo-chemical reactions, etc.

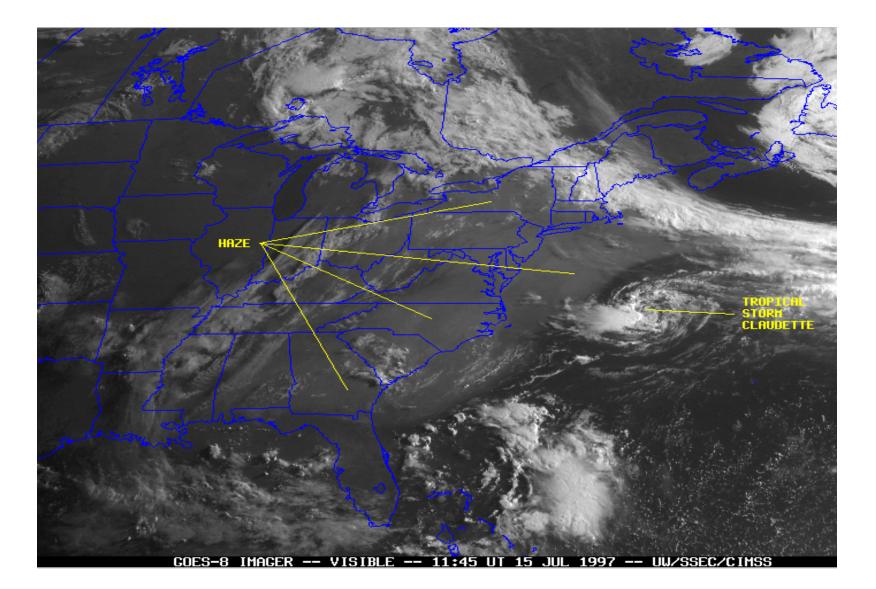
- « accumulation »: radius is between 0.05 μm and 0.5 μm. Coagulation processes.

- « **coarse** »: larger than 1 μ m. From mechanical processes like aeolian erosion.

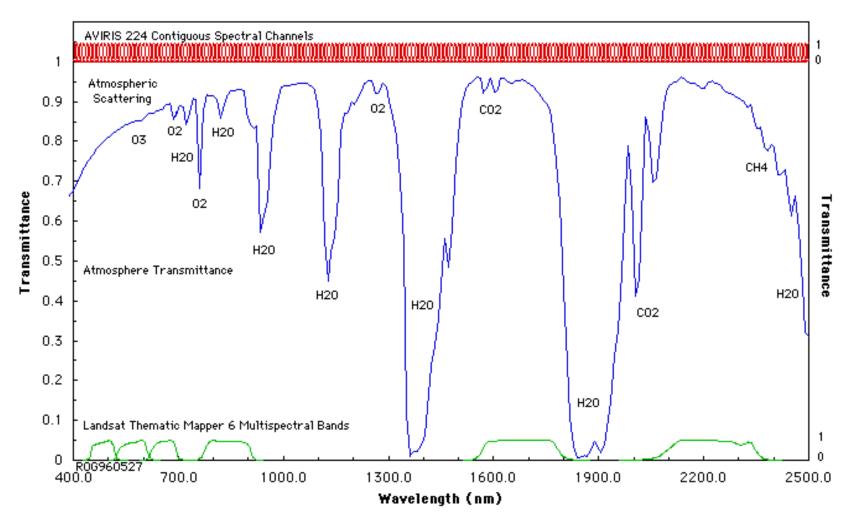
« fine » particles (nucleation and accumulation) result from anthropogenic activities, coarse particles come from natural processes.



Scattering of early morning sun light from haze

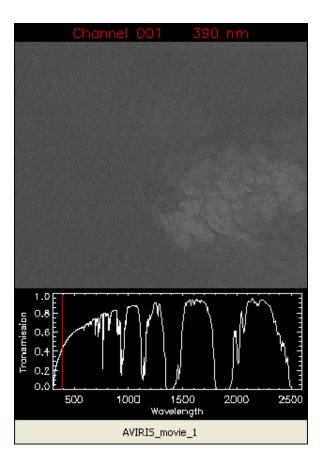


Measurements in the Solar Reflected Spectrum across the region covered by AVIRIS



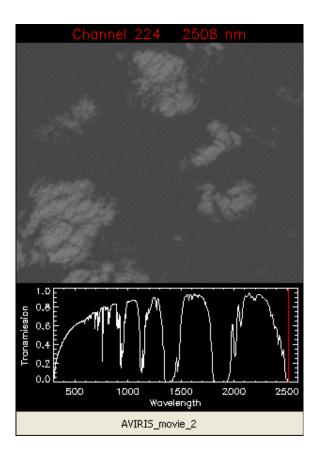
AVIRIS Movie #1

AVIRIS Image - Linden CA 20-Aug-1992 224 Spectral Bands: 0.4 - 2.5 μm Pixel: 20m x 20m Scene: 10km x 10km



AVIRIS Movie #2

AVIRIS Image - Porto Nacional, Brazil 20-Aug-1995 224 Spectral Bands: 0.4 - 2.5 μm Pixel: 20m x 20m Scene: 10km x 10km



Relevant Material in Applications of Meteorological Satellites

CHAPTER 2 - NATURE OF RADIATION

2.1	Remote Sensing of Radiation	2-1
2.2	Basic Units	2-1
2.3	Definitions of Radiation	2-2
2.5	Related Derivations	2-5

CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING

3.1	Absorption and Emission	3-1
3.2	Conservation of Energy	3-1
3.3	Planetary Albedo	3-2
3.4	Selective Absorption and Emission	3-2
3.7	Summary of Interactions between Radiation and Matter	3-6
3.8	Beer's Law and Schwarzchild's Equation	3-7
3.9	Atmospheric Scattering	3-9
3.10	The Solar Spectrum	3-11
3.11	Composition of the Earth's Atmosphere	3-11
3.12	Atmospheric Absorption and Emission of Solar Radiation	3-11
3.13	Atmospheric Absorption and Emission of Thermal Radiation	3-12
3.14	Atmospheric Absorption Bands in the IR Spectrum	3-13
3.15	Atmospheric Absorption Bands in the Microwave Spectrum	3-14
3.16	Remote Sensing Regions	3-14
CHAPT	ER 5 - THE RADIATIVE TRANSFER EQUATION (RTE)	

5.1	Derivation of RTE	5-1
5.10	Microwave Form of RTE	5-28

Radiative Transfer Equation

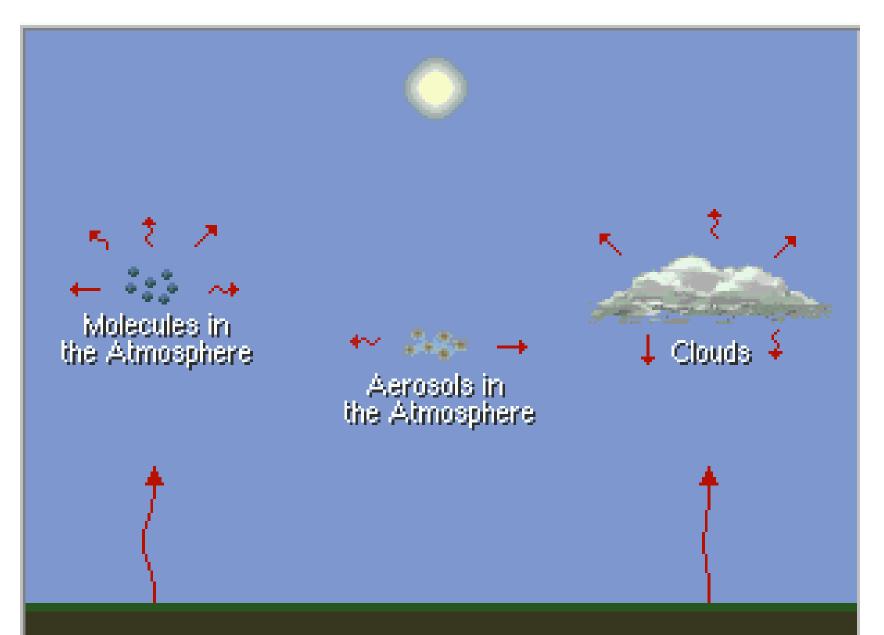
The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I_{λ} , for a cloudless atmosphere is given by the expression

$$I_{\lambda} = \varepsilon_{\lambda}^{sfc} B_{\lambda}(T_{sfc}) \tau_{\lambda}(sfc - top) + \sum \varepsilon_{\lambda}^{layer} B_{\lambda}(T_{layer}) \tau_{\lambda}(layer - top)$$

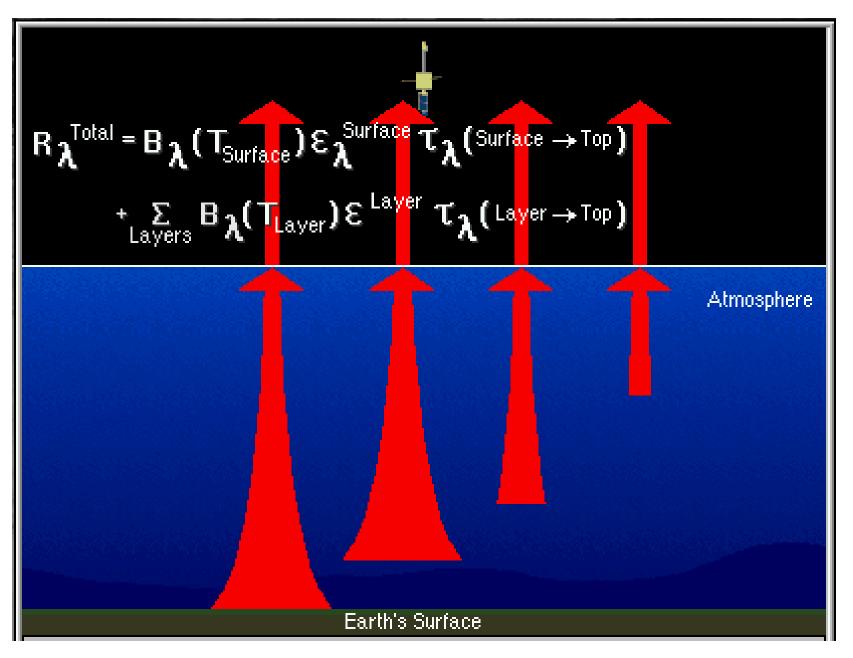
layers

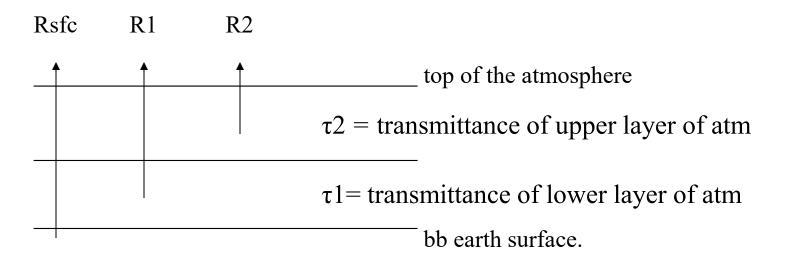
where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

Re-emission of Infrared Radiation



Radiative Transfer through the Atmosphere





Robs = Rsfc $\tau 1 \tau 2 + R1 (1-\tau 1) \tau 2 + R2 (1-\tau 2)$

In standard notation,

$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T(p_s)) \tau_{\lambda}(p_s) + \sum \epsilon_{\lambda}(\Delta p) B_{\lambda}(T(p)) \tau_{\lambda}(p)$$

$$p$$

The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer). Consequently,

$$\epsilon_{\lambda}(\Delta p) \tau_{\lambda}(p) = \left[1 - \tau_{\lambda}(\Delta p)\right] \tau_{\lambda}(p)$$

Since transmittance is an exponential function of depth of absorbing constituent,

$$\tau_{\lambda}(\Delta p) \tau_{\lambda}(p) = \exp \left[\begin{array}{cc} -\int & k_{\lambda} q g^{-1} dp \right] * \exp \left[\begin{array}{cc} -\int & p \\ \int & k_{\lambda} q g^{-1} dp \right] = \tau_{\lambda}(p + \Delta p)$$

$$p \qquad \qquad o$$

Therefore

$$\epsilon_{\lambda}(\Delta p) \; \tau_{\lambda}(p) \; = \; \tau_{\lambda}(p) \; \text{-} \; \tau_{\lambda}(p + \Delta p) \; = \; \text{-} \; \Delta \tau_{\lambda}(p) \; .$$

So we can write

$$\begin{split} I_\lambda \ = \ \epsilon_\lambda^{\ sfc} \ B_\lambda(T(p_s)) \ \tau_\lambda(p_s) \ - \ \Sigma \ \ B_\lambda(T(p)) \ \Delta \tau_\lambda(p) \ . \\ p \end{split}$$
 which when written in integral form reads

$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T(p_s)) \tau_{\lambda}(p_s) - \int_{0}^{p_s} B_{\lambda}(T(p)) \left[d\tau_{\lambda}(p) / dp \right] dp .$$

When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written

$$I_{\lambda} = \varepsilon_{\lambda}^{sfc} B_{\lambda}(T_s) \tau_{\lambda}(p_s) + \int_{0}^{0} B_{\lambda}(T(p)) F_{\lambda}(p) \left[\frac{d\tau_{\lambda}(p)}{dp} \right] dp$$

where

$$F_{\lambda}(p) = \left\{ 1 + (1 - \epsilon_{\lambda}) \left[\tau_{\lambda}(p_s) / \tau_{\lambda}(p) \right]^2 \right\}$$

The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface.

The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is [$d\tau_{\lambda}(p) / dp$]. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

Schwarzchild's equation

At wavelengths of terrestrial radiation, absorption and emission are equally important and must be considered simultaneously. Absorption of terrestrial radiation along an upward path through the atmosphere is described by the relation

 $-dL_{\lambda}^{abs} = L_{\lambda} k_{\lambda} \rho \sec \phi dz$.

Making use of Kirchhoff's law it is possible to write an analogous expression for the emission,

$$dL_{\lambda}^{\ em}\ =\ B_{\lambda}\ d\epsilon_{\lambda}\ =\ B_{\lambda}\ da_{\lambda}\ =\ B_{\lambda}\ k_{\lambda}\ \rho\ sec\ \phi\ dz\ ,$$

where B_{λ} is the blackbody monochromatic radiance specified by Planck's law. Together

$$dL_{\lambda} = - (L_{\lambda} - B_{\lambda}) k_{\lambda} \rho \sec \phi dz$$
.

This expression, known as Schwarzchild's equation, is the basis for computations of the transfer of infrared radiation.

Schwarzschild to RTE

$$dL_{\lambda} = - (L_{\lambda} - B_{\lambda}) k_{\lambda} \rho dz$$

but

$$d\tau_{\lambda} = \tau_{\lambda} k \rho dz \quad \text{since} \quad \tau_{\lambda} = \exp \left[-k_{\lambda} \int \rho dz\right].$$

SO

$$\tau_{\lambda} dL_{\lambda} = - (L_{\lambda} - B_{\lambda}) d\tau_{\lambda}$$

$$\tau_{\lambda} dL_{\lambda} + L_{\lambda} d\tau_{\lambda} = B_{\lambda} d\tau_{\lambda}$$

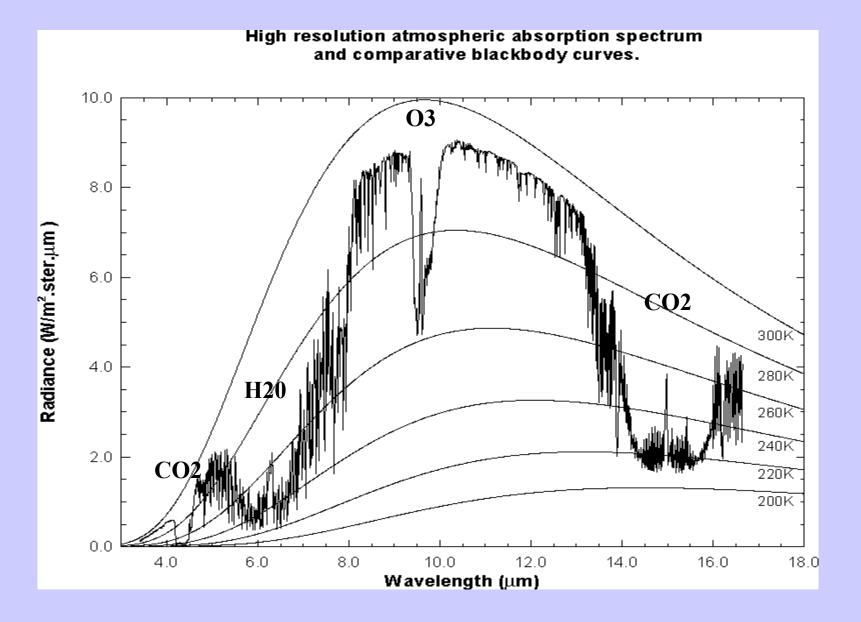
$$d (L_{\lambda} \tau_{\lambda}) = B_{\lambda} d\tau_{\lambda}$$

Integrate from 0 to ∞

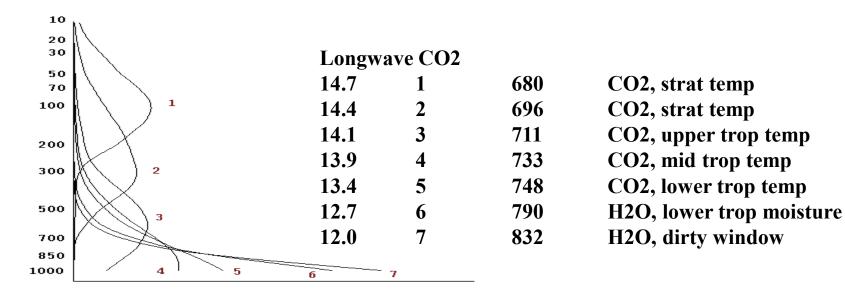
$$L_{\lambda}(\infty) \tau_{\lambda}(\infty) - L_{\lambda}(0) \tau_{\lambda}(0) = \int_{0}^{\infty} B_{\lambda} [d\tau_{\lambda}/dz] dz.$$
$$L_{\lambda}(sat) = L_{\lambda}(sfc) \tau_{\lambda}(sfc) + \int_{0}^{\infty} B_{\lambda} [d\tau_{\lambda}/dz] dz.$$
$$0$$

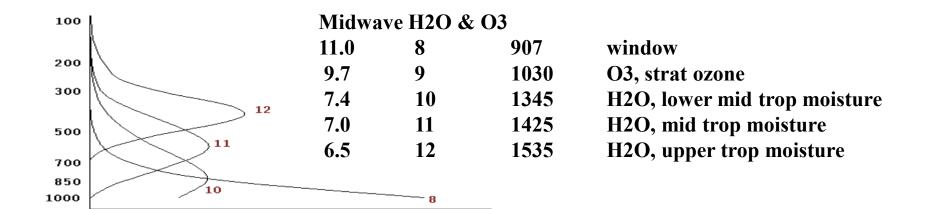
and

Earth emitted spectra overlaid on Planck function envelopes

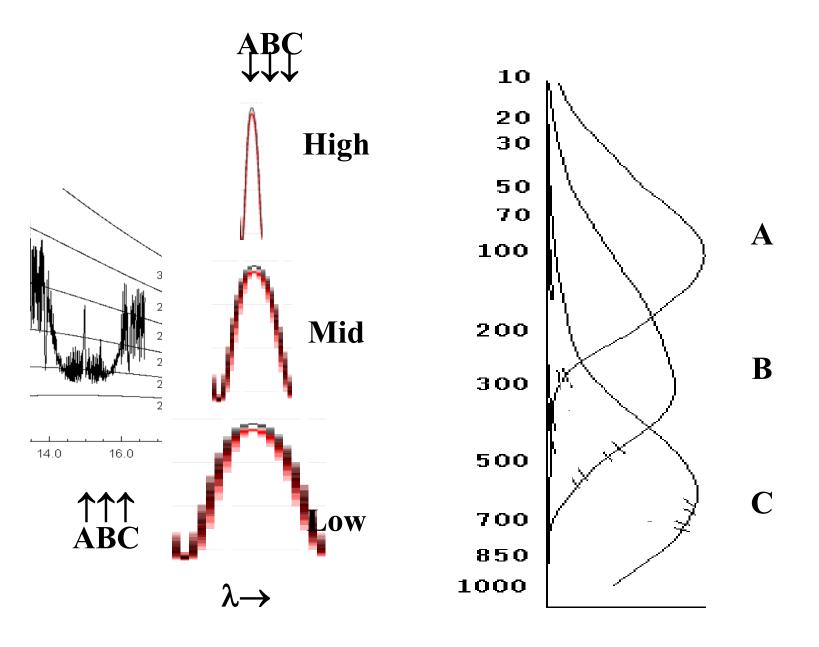


Weighting Functions

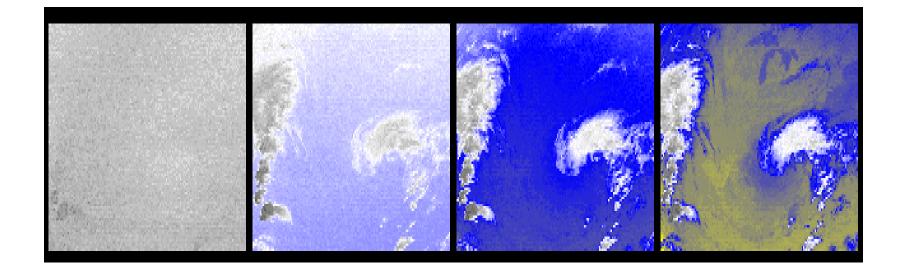




line broadening with pressure helps to explain weighting functions

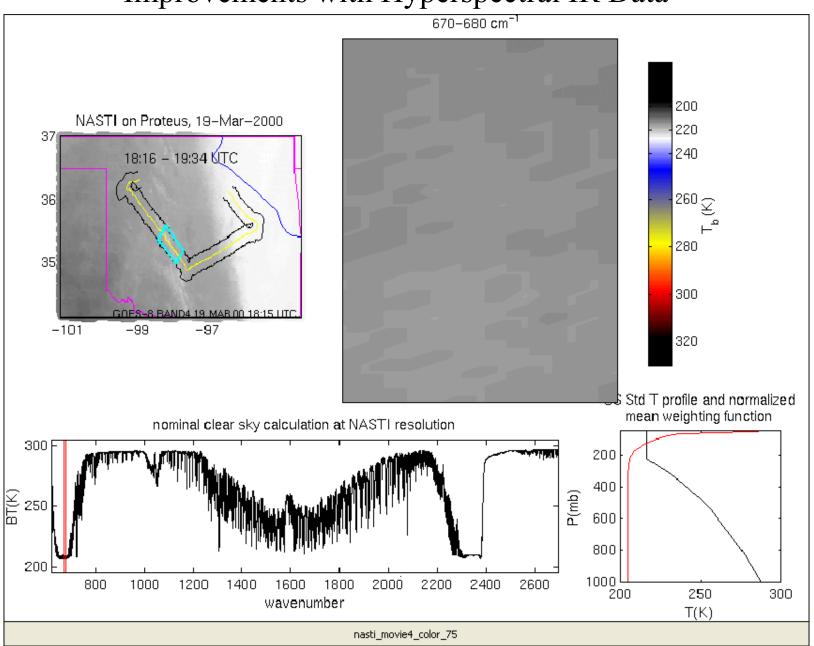


CO2 channels see to different levels in the atmosphere

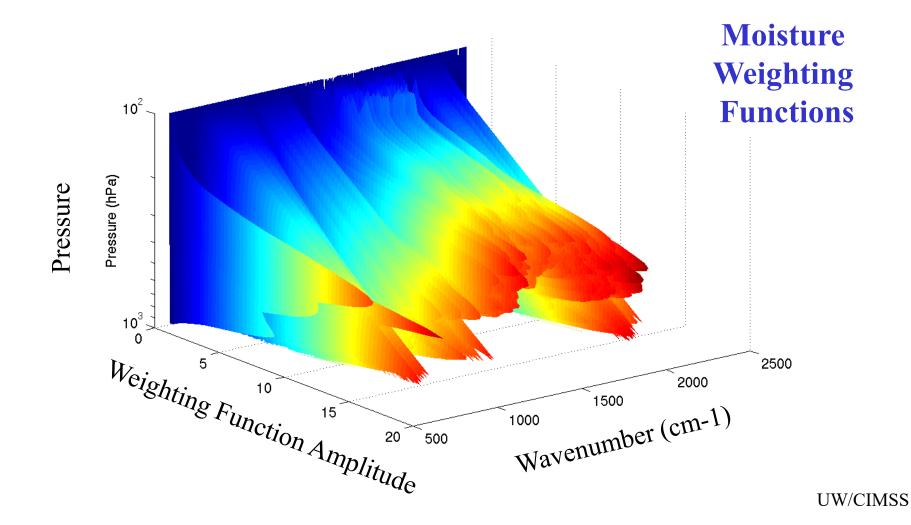


14.2 um 13.9 um 13.6 um 13.3 um

Improvements with Hyperspectral IR Data



These water vapor weighting functions reflect the radiance sensitivity of the specific channels to a water vapor % change at a specific level (equivalent to dR/dlnq scaled by dlnp).



The advanced sounder has more and sharper weighting functions

Characteristics of RTE

- * Radiance arises from deep and overlapping layers
- * The radiance observations are not independent
- There is no unique relation between the spectrum of the outgoing radiance and T(p) or Q(p)
- * T(p) is buried in an exponent in the denominator in the integral
- * Q(p) is implicit in the transmittance
- Boundary conditions are necessary for a solution; the better the first guess the better the final solution

To investigate the RTE further consider the atmospheric contribution to the radiance to space of an infinitesimal layer of the atmosphere at height z, $dI_{\lambda}(z) = B_{\lambda}(T(z)) d\tau_{\lambda}(z)$.

Assume a well-mixed isothermal atmosphere where the density drops off exponentially with height $\rho = \rho_0 \exp(-\gamma z)$, and assume k_{λ} is independent of height, so that the optical depth can be written for normal incidence

$$\sigma_{\lambda} = \int_{z}^{\infty} k_{\lambda} \rho \, dz = \gamma^{-1} k_{\lambda} \rho_{o} \exp(-\gamma z)$$

and the derivative with respect to height

$$\frac{d\sigma_{\lambda}}{dz} = -k_{\lambda} \rho_{o} \exp(-\gamma z) = -\gamma \sigma_{\lambda}$$

Therefore, we may obtain an expression for the detected radiance per unit thickness of the layer as a function of optical depth,

$$\frac{dI_{\lambda}(z)}{dz} = B_{\lambda}(T_{const}) \frac{d\tau_{\lambda}(z)}{dz} = B_{\lambda}(T_{const}) \gamma \sigma_{\lambda} \exp(-\sigma_{\lambda})$$

The level which is emitting the most detected radiance is given by

$$\frac{d}{dz} \quad \frac{dI_{\lambda}(z)}{dz} = 0, \text{ or where } \sigma_{\lambda} = 1.$$

Most of monochromatic radiance detected is emitted by layers near level of unit optical depth.

Profile Retrieval from Sounder Radiances

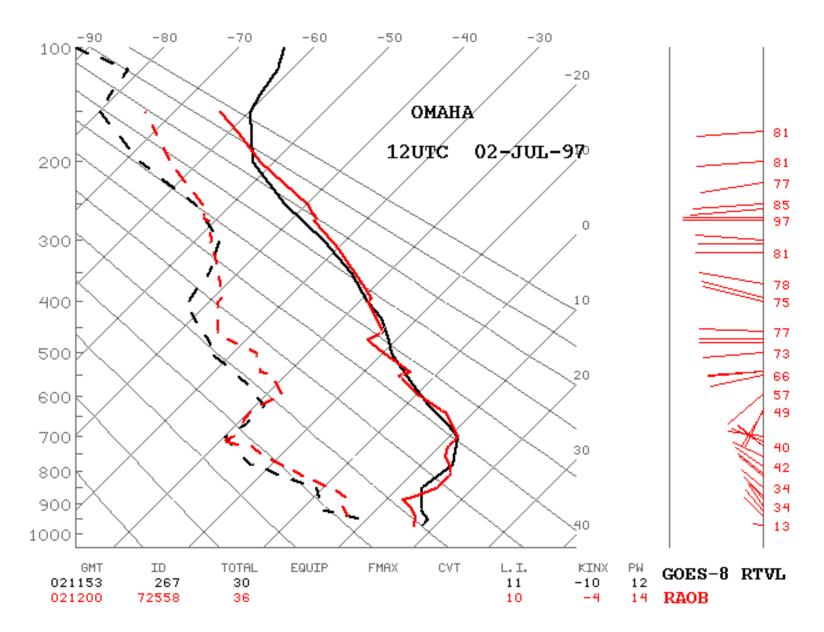
$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T(p_s)) \tau_{\lambda}(p_s) - \int_{0}^{p_s} B_{\lambda}(T(p)) F_{\lambda}(p) [d\tau_{\lambda}(p) / dp] dp .$$

I1, I2, I3,, In are measured with the sounder P(sfc) and T(sfc) come from ground based conventional observations $\tau_{\lambda}(p)$ are calculated with physics models (using for CO2 and O3) $\varepsilon_{\lambda}^{sfc}$ is estimated from a priori information (or regression guess)

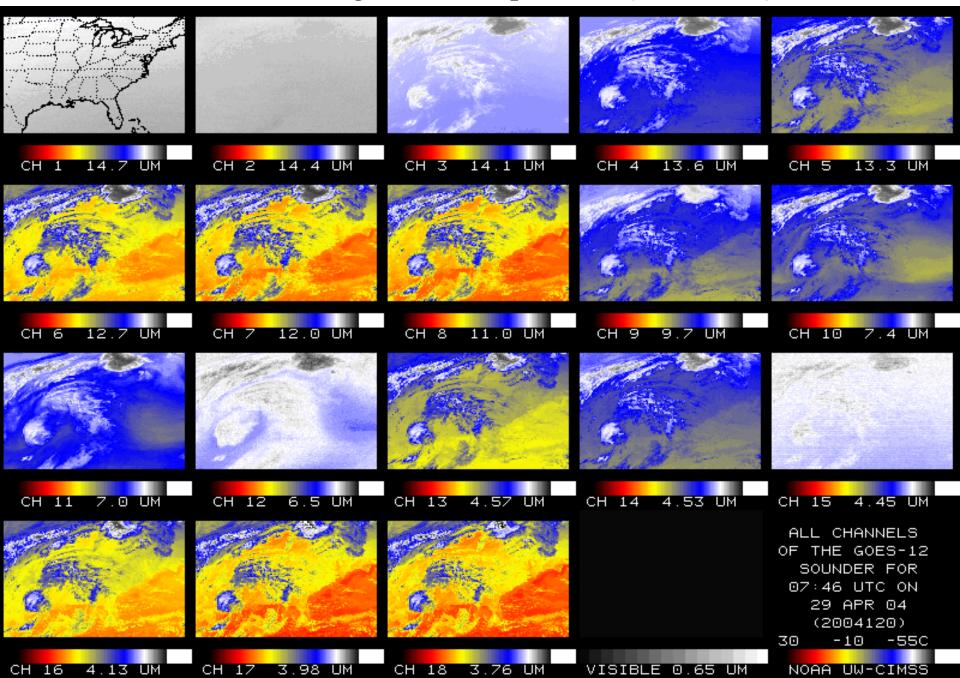
First guess solution is inferred from (1) in situ radiosonde reports, (2) model prediction, or (3) blending of (1) and (2)

Profile retrieval from perturbing guess to match measured sounder radiances

Example GOES Sounding



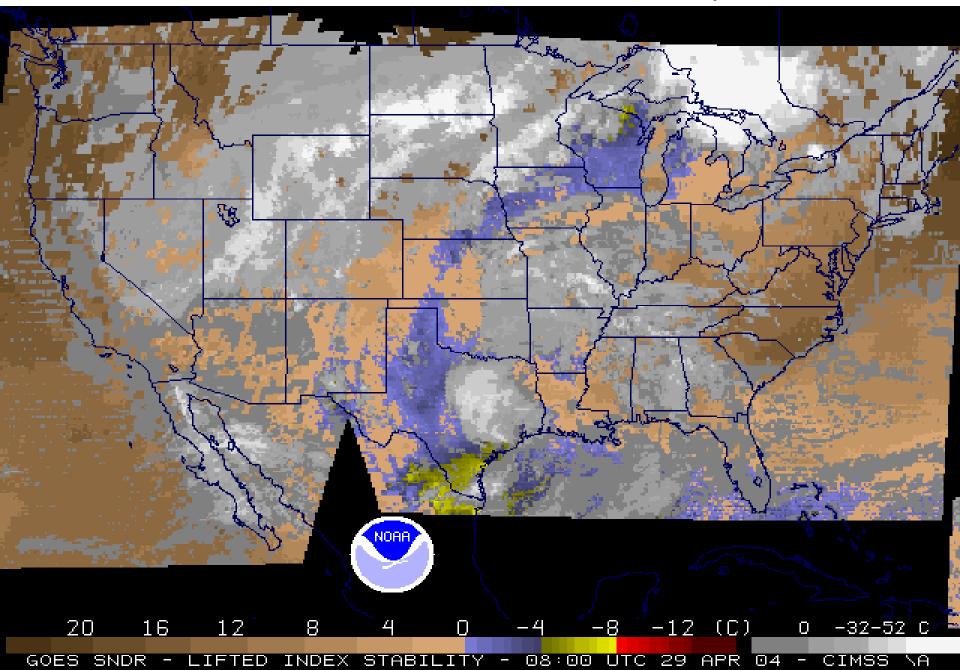
GOES-12 Sounder – Brightness Temperature (Radiances) – 12 bands

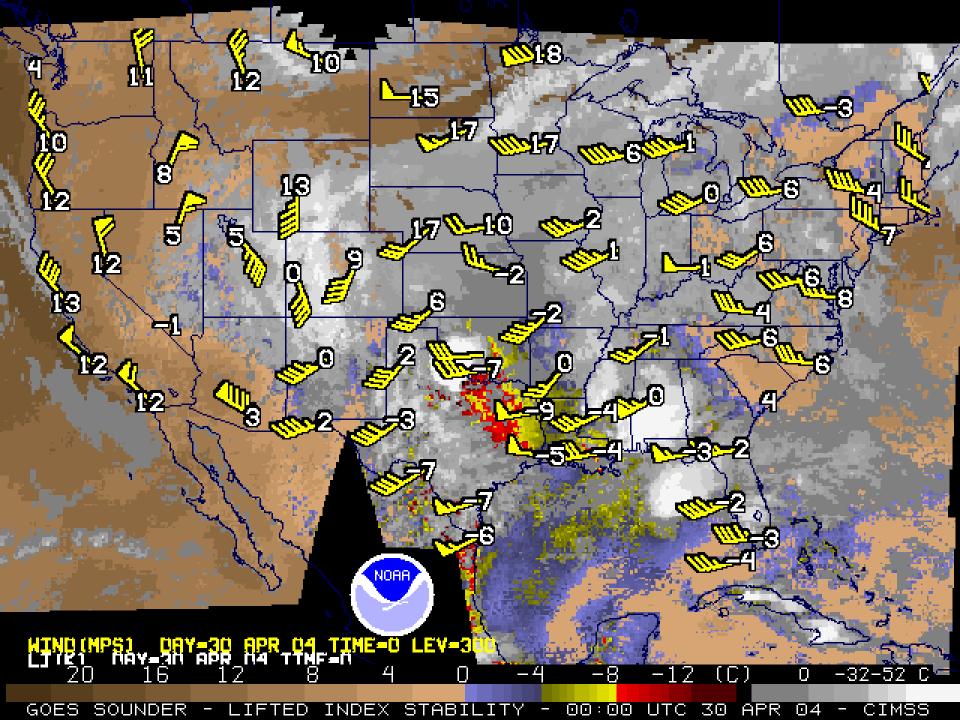


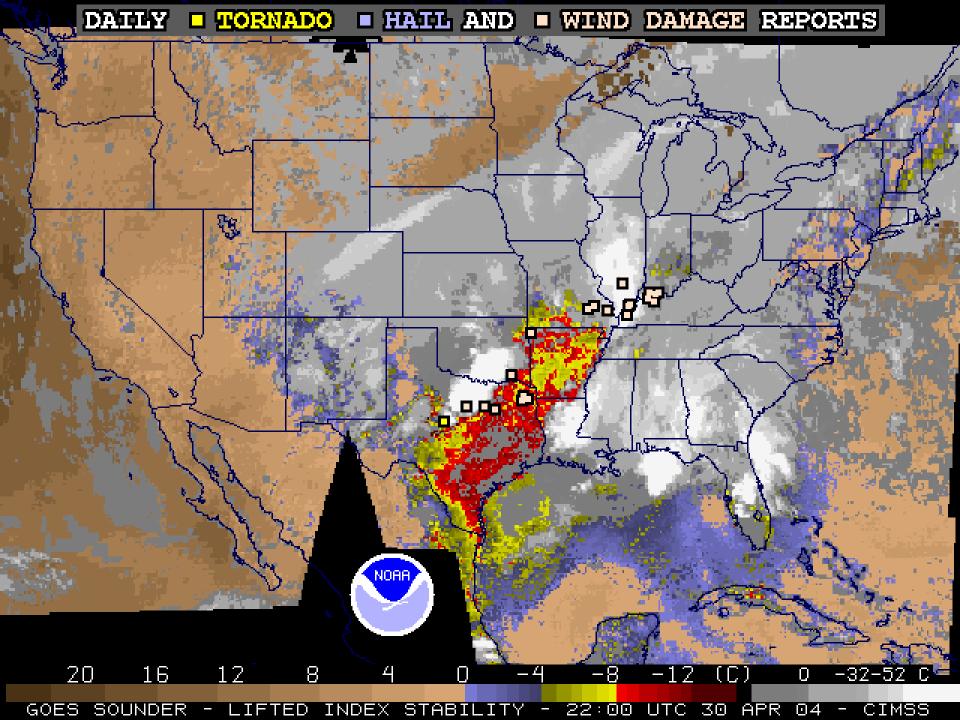
GOES Sounders – Total Precipitable Water



GOES Sounders –Lifted Index Stability







Sounder Retrieval Products

$$I_{\lambda} = \varepsilon_{\lambda}(\text{sfc}) B_{\lambda}(T(\text{ps})) \tau_{\lambda}(\text{ps}) - \int_{0}^{\text{ps}} B_{\lambda}(T(p)) F_{\lambda}(p) [d\tau_{\lambda}(p) / dp] dp.$$

Direct

brightness temperatures

Derived in Clear Sky

20 retrieved temperatures (at mandatory levels)

20 geo-potential heights (at mandatory levels)

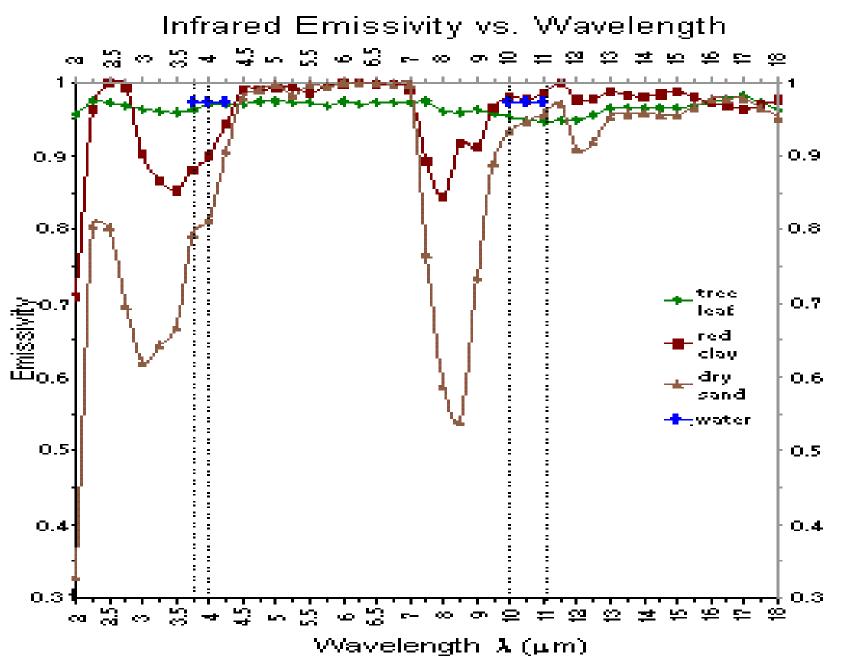
- 11 dewpoint temperatures (at 300 hPa and below)
- 3 thermal gradient winds (at 700, 500, 400 hPa)
- 1 total precipitable water vapor
- 1 surface skin temperature
- 2 stability index (lifted index, CAPE)

Derived in Cloudy conditions

3 cloud parameters (amount, cloud top pressure, and cloud top temperature)

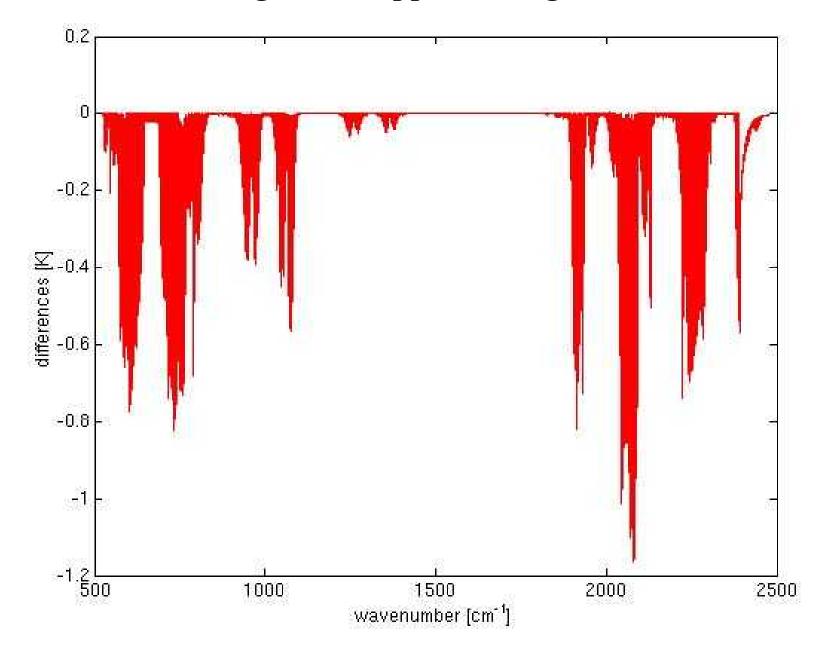
Mandatory Levels (in hPa)

sfc	780	300	70
1000	700	250	50
950	670	200	30
920	500	150	20
850	400	100	10



PND/COMET

BT differences resulting from 10 ppmv change in CO2 concentration



Microwave RTE

Lectures in Benevento June 2007

Paul Menzel UW/CIMSS/AOS

WAVELENGTH		FREQUENCY		WAVENUMBER	
cm	μm	Å	Hz	GHz	cm ⁻¹
10 ⁻⁵ Near Ultraviolet (0.1 UV)	1,000	3x10 ¹⁵		
4x10 ⁻⁵ Visible	0.4	4,000	7.5x10 ¹⁴		
7.5x10 ⁻⁵ Near Infrared (IR	0.75)	7,500	4x10 ¹⁴		13,333
2x10 ⁻³ Far Infrared (IR)	20	2x10 ⁵	1.5x10 ¹³		500
0.1 Microwave (MW)	10 ³		3x10 ¹¹	300	10

Radiation is governed by Planck's Law

$$c_2 / \lambda T$$

B(\lambda,T) = c_1 / { \lambda ⁵ [e -1] }

In microwave region $c_2/\lambda T \ll 1$ so that $c_2/\lambda T$ $e = 1 + c_2/\lambda T + second order$

And classical Rayleigh Jeans radiation equation emerges

 $\mathbf{B}_{\lambda}(\mathbf{T}) \approx [\mathbf{c}_1 / \mathbf{c}_2] [\mathbf{T} / \lambda^4]$

Radiance is linear function of brightness temperature.

Microwave Form of RTE

$$\frac{a \text{ ve Form of RTE}}{I^{\text{sfc}} = \epsilon_{\lambda} B_{\lambda}(T_{s}) \tau_{\lambda}(p_{s}) + (1-\epsilon_{\lambda}) \tau_{\lambda}(p_{s}) \int_{0}^{p_{s}} B_{\lambda}(T(p)) \frac{\partial \tau'_{\lambda}(p)}{\partial \ln p} d \ln p$$

$$I_{\lambda} = \epsilon_{\lambda} B_{\lambda}(T_{s}) \tau_{\lambda}(p_{s}) + (1-\epsilon_{\lambda}) \tau_{\lambda}(p_{s}) \int_{0}^{p_{s}} B_{\lambda}(T(p)) \frac{\partial \tau'_{\lambda}(p)}{\partial \ln p} d \ln p$$

$$+ \int_{p_{s}}^{0} B_{\lambda}(T(p)) \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} d \ln p$$

$$\frac{a \text{tm}}{ref \text{ atm sfc}}$$

$$\downarrow \uparrow \uparrow \uparrow$$

$$\downarrow \uparrow \uparrow$$

In the microwave region $c_2/\lambda T$ << 1, so the Planck radiance is linearly proportional to the temperature

$$B_{\lambda}(T) \approx [c_1 / c_2] [T / \lambda^4]$$

So

$$T_{b\lambda} = \varepsilon_{\lambda} T_{s}(p_{s}) \tau_{\lambda}(p_{s}) + \int_{p_{s}}^{0} T(p) F_{\lambda}(p) \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} d \ln p$$

where

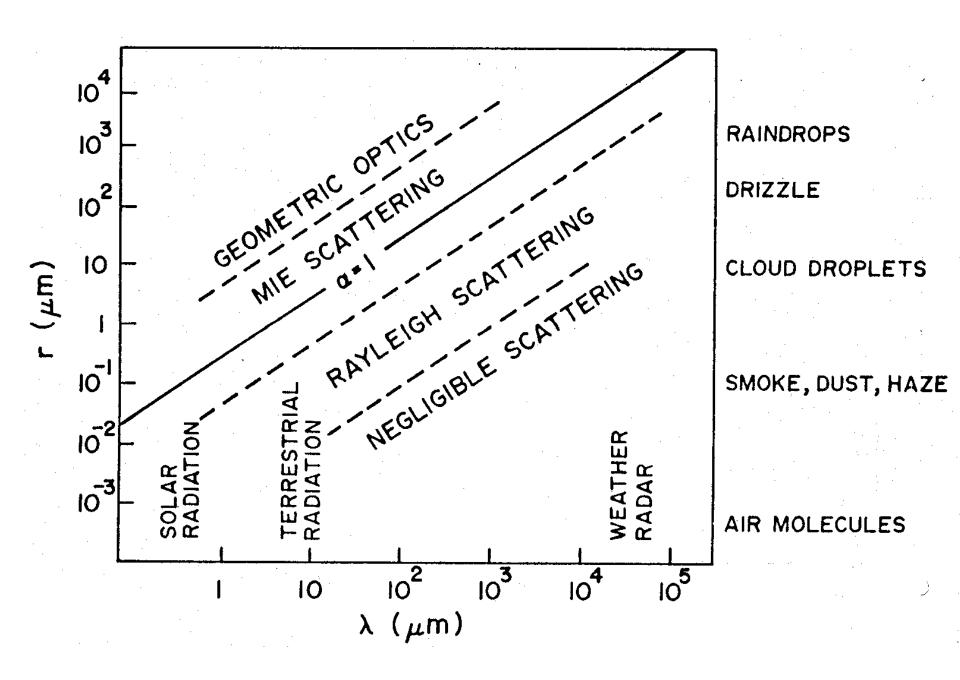
$$F_{\lambda}(p) = \left\{ 1 + (1 - \varepsilon_{\lambda}) \left[\frac{\tau_{\lambda}(p_s)}{\tau_{\lambda}(p)} \right]^2 \right\}.$$

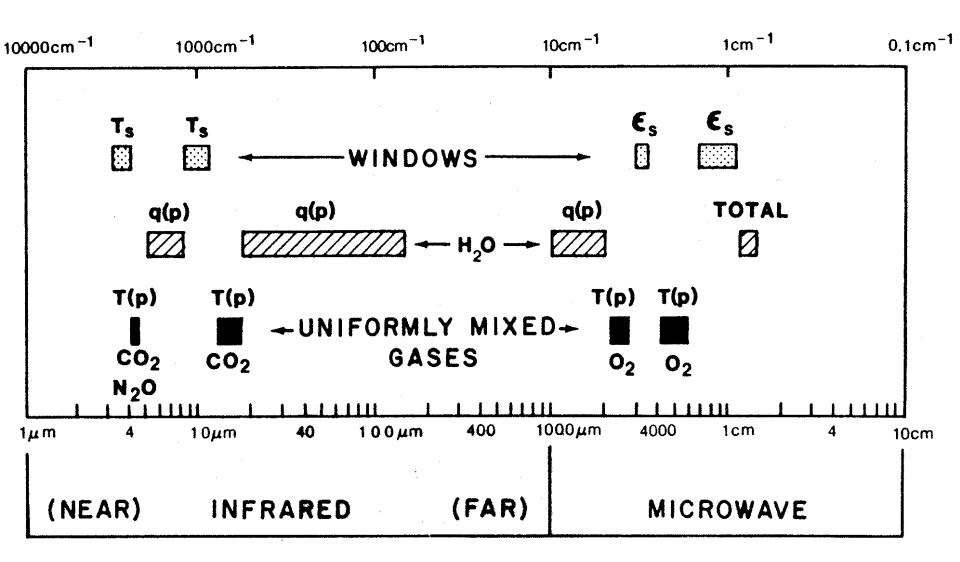
The transmittance to the surface can be expressed in terms of transmittance to the top of the atmosphere by remembering

$$\tau'_{\lambda}(p) = \exp\left[-\frac{1}{2} \int_{s}^{p_{s}} k_{\lambda}(p) g(p) dp\right]$$
$$= \exp\left[-\int_{0}^{p_{s}} f_{\lambda}^{p}\right]$$
$$= \exp\left[-\int_{0}^{p_{s}} f_{\lambda}^{p}\right]$$
$$= \tau_{\lambda}(p_{s}) / \tau_{\lambda}(p) .$$
$$\frac{\partial \tau'_{\lambda}(p)}{\partial \ln p} = -\frac{\tau_{\lambda}(p_{s})}{(\tau_{\lambda}(p))^{2}} \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} .$$

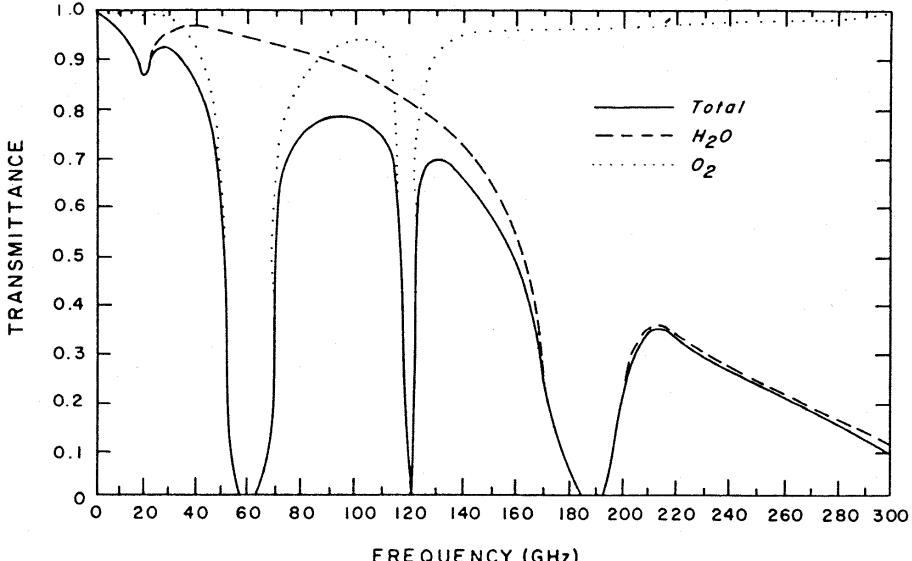
[remember that $\tau_{\lambda}(p_s, p) \tau_{\lambda}(p, 0) = \tau_{\lambda}(p_s, 0)$ and $\tau_{\lambda}(p_s, p) = \tau_{\lambda}(p, p_s)$]

So





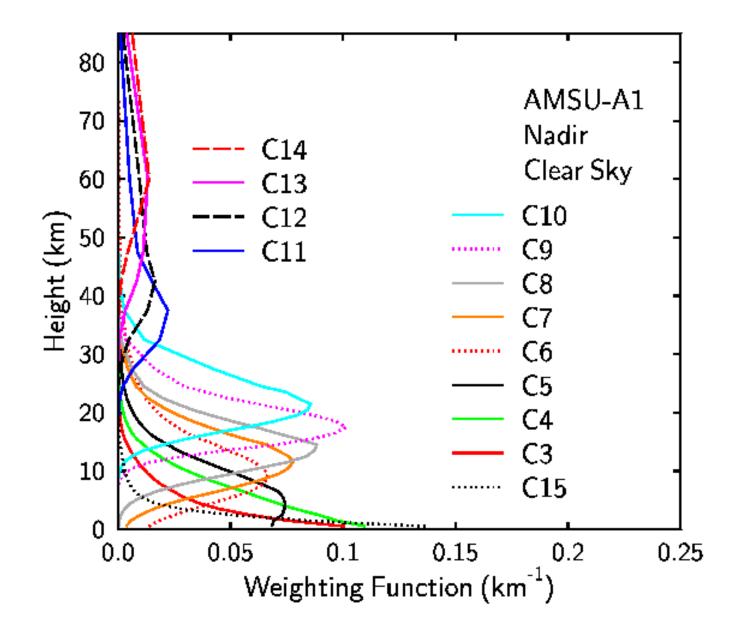
Spectral regions used for remote sensing of the earth atmosphere and surface from satellites. ε indicates emissivity, q denotes water vapour, and T represents temperature.

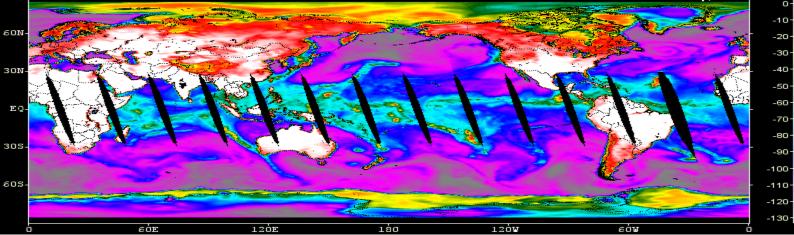


FREQUENCY (GHz)

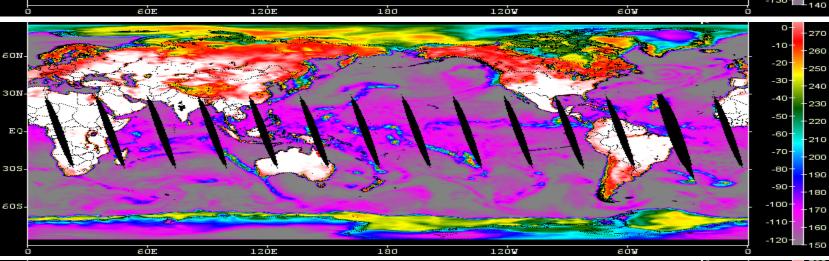
Microwave spectral bands

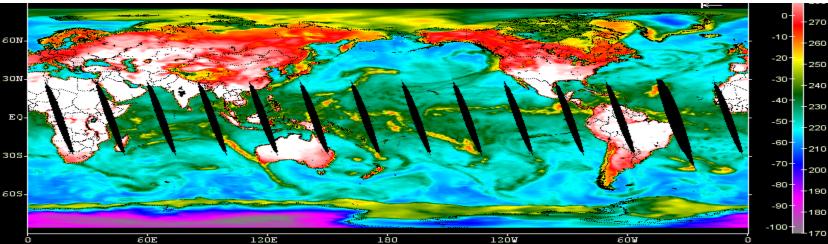
- 23.8 GHz dirty window H2O absorption
- 31.4 GHz window
- 60 GHz O2 sounding
- 120 GHz O2 sounding
- 183 GHz H2O sounding

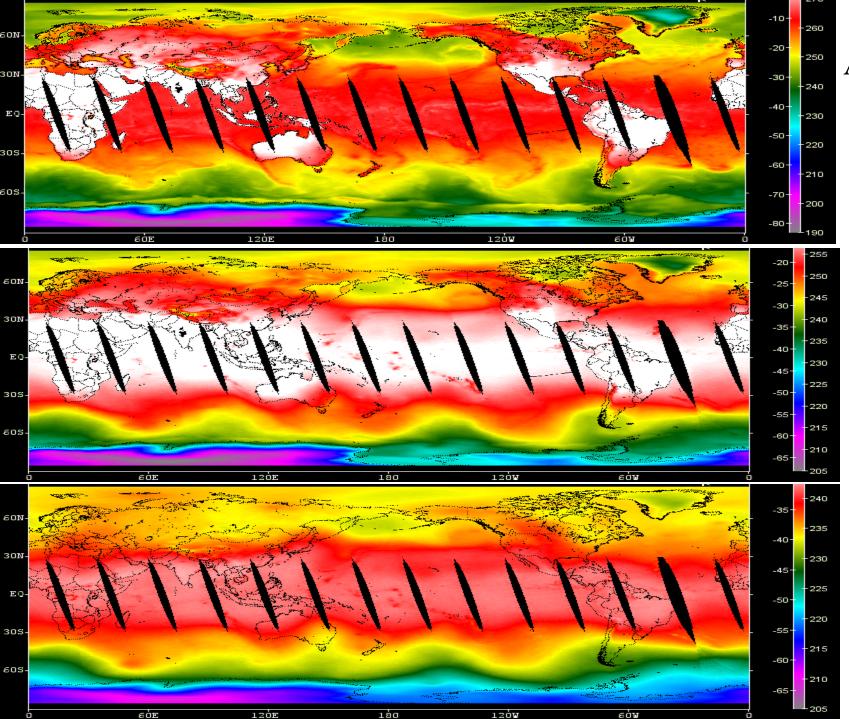




50.3 GHz



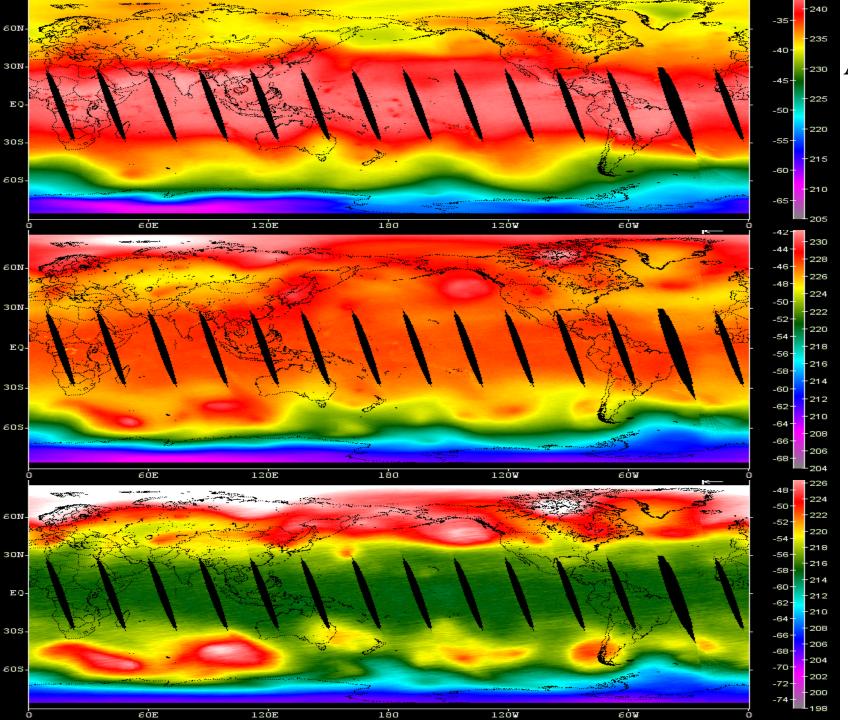




AMSU 52.8

53.6

54.4 GHz



AMSU 54.4

54.9

55.5 GHz

