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1. Introduction 
 
Optimal estimation theory, on which most retrieval and data assimilation methods are based, assumes 
that the error covariances of the observations and of the a priori (background) information are known, 
and that they are used (at least approximately) in the retrieval/analysis procedure.  In data assimilation 
for numerical weather prediction (NWP), background errors may be known reasonably well in the 
sense of global statistics.  However, this can disguise substantial spatial and temporal variability.  
Moreover, it is possible for the overall error variance to be correct whilst the partitioning of errors 
between different spatial scales is significantly incorrect.  The specification of the magnitude and 
vertical structure of the background error covariance is crucial to the appropriate interpretation of 
radiance information from satellite sounders within a NWP data assimilation system.  Uncertainties in 
the specification of error covariances are inevitable, but an improved understanding of the acceptable 
range of misspecification is likely to lead to improved impact of these data in NWP.  This problem is 
likely to be important for advanced infra-red sounders, as we attempt to extract information on smaller 
vertical scales, whilst retaining the information that the NWP model usually contains on sharp vertical 
structures, such as the tropopause and the boundary layer top. 
 
In this paper, we present initial investigations of the sensitivity of analysis error to the misspecification 
of background error.  We first discuss further the motivation for the work and summarise previous work 
on this topic.  We then present the theory for analysis/retrieval error, and for the differences between 
the optimal case and the general, sub-optimal case.  We illustrate this theory for a simple scalar case, 
where we identify a “danger zone”, i.e. a level of misspecification of background error that will degrade 
the analysis, which we quantify as a function of the ratio of observation error to background error.  We 
then present preliminary results for a more complex case: a one-dimensional variational retrieval (1D-
Var) analogue of the assimilation of radiances from the Infra-red Atmospheric Sounding Interferometer 
(IASI) on the MetOp satellite (Simeoni et al., 1997) into the Met Office global NWP system.  We 
examine the vertical eigen-modes of a forecast error covariance matrix and calculate the “information 
content” of a IASI brightness temperature spectrum, i.e. how much the analysis error is reduced 
compared to the background error, in each eigen-mode.  Finally we present conclusions and 
suggestions for further work. 
 
 

2. Background 
 
Compared with most types of new data from satellites, initial exploitation of IASI data by the NWP 
community has been very rapid and successful; radiance data of high quality were made available to 
the community by EUMETSAT soon after launch in 2006, and several centres proceeded to 
demonstrate positive impact on NWP performance (e.g. Hilton et al., 2009; Collard and McNally, 2009). 
  Nevertheless, it is clear that the full information content potentially available from IASI and other 
advanced IR sounder data is far from being fully exploited in NWP.  Active research is in progress to 
seek improvements in several areas including: efficient processing of the full spectrum, observation 
errors including inter-channel correlations, residual biases, surface properties over land and ice, 
treatment of cloud, and background error statistics.  In this paper we examine only the last of these. 
 
Most data assimilation and satellite retrieval methods are based on optimal estimation (OE) theory (e.g. 
see Rodgers 1976, Lorenc, 1988).  With this theory, the best estimate of the state of the system is 
derived by combining observed estimates with prior estimates, weighting each according to its error 
covariance.  Such retrieval/analysis methods implicitly assume that the error covariances are known 



whereas, in practice, they are usually known only approximately.  There are two ways forward to 
address this problem.  The first is to strive to improve our estimates of these quantities, and this is a 
field of continuing work.  The second is to try to make assimilation/retrieval robust against our 

inevitable lack of knowledge of the error covariances.  This general problem applies equally to both 
background and observation error covariances.  In this paper, we only consider the former. 
 
Why are background error covariances inevitably in error?  Global averages of their statistics can be 
estimated quite accurately from the diagnostics of NWP systems, but such averages mask large 
spatial and temporal variability.  We need therefore to understand our sensitivity to background error 
covariance and its inevitable mis-specification.  It has also been suggested that the sensitivity may be 
particularly important for the assimilation of satellite radiances or other non-local observations, and this 
issue is explored in a companion paper (Hilton and Eyre, 2010). 
 
Advanced infra-red sounders sounder such as IASI are often characterised as having a vertical 
resolution of ~1 km (Prunet et al., 1998; Collard, 1998).  This is equivalent to stating that they are 
sensitive with low error to scales significantly greater than 1 km, and not sensitive to scales significantly 
smaller than1 km, but sensitive to scales of approximately1 km with errors comparable to background 
errors.  This illustrates why it is important to understand the vertical structure of the background error 
covariance and its magnitude on different scales, as this will determine how measurements and prior 

information are weighted on each scale, and the effect of mis-specifying the background error on each 
scale.   
 
There appears to be surprisingly little in the assimilation/retrieval literature on effects of misspecifying 
background errors.  Some mathematical aspects are considered by Strand (1974).  Daley (1991) 
references three papers on the topic: Seaman (1977), Seaman (1983) and Franke (1985), which are 
most relevant to the horizontal analysis of relatively sparse observations.  Watts and McNally (1988) 
and McNally (2000) show the effects of misspecifying background error for some specific examples of 
the vertical analysis problem for passive sounder data. 
 
In this paper, we explore some general properties of the problem by considering the scalar (zero-
dimensional) analysis problem.  We also present a framework for applying these ideas to a specific 
one-dimensional problem: the analysis of the vertical profiles of temperature and humidity from IASI 
data. 
 
 

3. Theory 
 
The general analysis/retrieval equation can be expressed in its linearised form as: 
 
 xa  =   xb  +  K . (yo – H[xb]),       (1) 
 
where xa is the analysed state vector, 

xb is the background state vector, 
yo is the observation vector, 
H[…] is the (generally nonlinear) operator for calculating the equivalent of the state vector in 
the observation space, 

and K is the general linearised analysis/retrieval operator. 
 
This equation gives rise to equivalent equations connecting the errors in these quantities: 
 
 εa  =   εb  +  K . (εo – H . εb),       (2) 
 
or εa  =   (I – K.H) . εb  +  K . εo ,       (3) 
 
where εa  and εb are the errors in xa and xb respectively, 

εo is the combined error in yo and operator H[…], 
 H is the Jacobian matrix of H[…] with respect to x, 
and  I is a unit matrix. 



 
An expression for the analysis error covariance, A, can then be derived from eq.(3): 
 
 A = (I–K.H).B.(I–K.H)T + K.R.KT,      (4) 
 
where B is the background error covariance, 
and R is the combined error covariance of the observation and the observation operator. 
 
Here we have had to assume only that the background and observation errors are uncorrelated with 
each other.  Equation (4) is therefore a very general expression. 
 
In the optimal case, in which the diagonal values of A are minimised with respect to the elements of K, 
we can derive usual expression for the optimal linear estimator: 
 
 K(B)  =  B.HT.(H.B.HT+R)-1.       (5) 
 
Here it is important to note that the optimal estimate will only be obtained if the background error 

covariance assumed by the analysis system (which we subsequently denote as BA) is equal to the true 
value of the background error covariance, B, such that the assumptions of OE are valid. 
 
By substituting eq.(5) into eq.(4), we can derive expressions for the analysis error covariance in the 
optimal case: 
 
 AOPT  =  (I–K.H).B,        (6) 

 
or AOPT

-1  =  B-1  +  HT.R-1.H  .        (7) 

 
Because K is a function of B, it can be seen from eq.(6) that A will be a nonlinear function of B. 
 
Consider now the general, sub-optimal case in which A is given by eq.(4).  In this case, although the 

true background error covariance is B, K has been derived using the assumed value BA, where B≠BA: 

 
 K(BA)  =  BA.HT.(H.BA.HT+R)-1.      (8) 
 
And the analysis error covariance, from eq.(4), is given by: 
 
 A(B) = (I–K(BA).H).B.(I–K(BA).H)T + K(BA).R.K(BA)T    (9) 

  
or A(B)  =  AOPT(BA)  +  (I–K(BA).H).(B-BA).(I–K(BA).H)T    (10) 

 
Note that, unlike eq.(6), equations (9) and (10) are linear in B. 

 
Later in this paper, we will also consider error covariances projected on to the eigenvectors of BA.  In 
the optimal case, where B = BA, eq.(7) becomes: 
 
 VT.AOPT

-1.V  =  VT.BA
-1.V  +  VT.HT.R-1.H.V      (11) 

 

 VT.AOPT
-1.V  =       Λ-1      +  VT.HT.R-1.H.V      (12) 

 
where V contains the eigenvectors of BA and Λ is a diagonal matrix containing the eigenvalues of BA. 
 
Why project on to the eigenvectors of BA, rather than B, or any other matrix?  Firstly, because it is 
known; whether it is right or wrong, it is the matrix used in the retrieval/analysis system, and thus it is 
the effective “filter” applied to the observations, affecting how much information is extracted from the 
observations on each scale.   
 
It should be noted that the eigenvectors and eigenvalues of the background error covariance have no 
intrinsic physical meaning; they are sensitive to purely mathematical aspects of their representation, 



such as whether humidity is expressed as specific humidity or its logarithm, and the temperature 
eigenvectors will be sensitive to the units of humidity if the two variables have correlated errors.  
Nevertheless, they are one way of representing the background errors on different scales (see Figs. 4 
and 5) and have the convenient property of orthogonality.  Moreover, in the Met Office operational 4D-
Var system (Rawlins et al., 2007), the vertical part of the B-matrix is actually represented by an 
operator in this eigen-space. 
 
 

4. The scalar case 
 
Let us consider the results of applying the theory developed in section 3 to a simple scalar case, in 
which there is one state variable and one observation of this variable, such that the Jacobian of the 
observation operator, H = 1.  Figure 1 illustrates these results. 
 

 
Figure 1.  Analysis error variance, A, as a function of the true background error variance, B, where 

the assumed background error variance, BA = 1, and the assumed (and true) observation 
error variance, R = 1. 

 
The red line represents eq.(9) or (10), and it shows the analysis error for this sub-optimal analysis 
problem.  Note that A is linear in B.  The green line shows the optimal solution, i.e. the analysis error 
variance that results when the correct value of B is assumed for each actual value of B.  The region 
below the green line, i.e. “better than optimal”, cannot be reached.  As expected, the two lines on 
coincide at B = BA = 1.  When B is greater than BA, the analysis is sub-optimal because the process 
assumes that the background is more accurate than it actually is, and hence extracts too little 
information from the observations.  When B is less than BA, the analysis is sub-optimal because the 
process assumes that the background is less accurate than it actually is, and hence attempts to extract 
too much information from the observations.  In this case, it is possible to make the analysis error 
variance greater than the background error variance.  This occurs when the red line crosses the line A 
= B.  We call the region beyond this point the “danger zone”, i.e. the portion of the red line to the left of 
the line A = B, in which the analysis is degraded relative to the background.  We should be aware of 
the presence of this zone and strive to avoid it.  On the other hand, we can see that if we attempt to 
avoid it by decreasing BA, we are more likely to be at the right-hand end of the red line, where the 
analysis fails to extract available information from the observations. 
 
Figure 2 shows the effects of varying the ratio between background and observation error variance.  At 
higher values of observation error, there is an increase in the value of B at which the “danger zone” 
begins.  However, the increased slope of the red line means that the negative consequences of 
crossing this line are reduced.  At lower values of observations error, the danger zone is more remote 
but the negative consequences of entering it are greater.   This is illustrated further in Figure 3, which 
shows the value of B at which the danger zone is entered as a function of the R, all for BA = 1.  It can 
be seen that, for a wide range of values of R, i.e. R > 0.5, the danger zone lies within a factor of 0.25-



0.45 of the assumed value of B.  In other words, in this range of R/BA, if the assumed background error 
variance is over-estimated by more than a factor of 2.2-4.0 then the analysis is likely to be degraded, 
and the problem will only be negligible if R « BA. 
 
This demonstrates the dangers of over-estimating the value of B in the analysis/retrieval process. 
 

 

 

  
Figure 2.  As Figure 1, but for R = 4 (left) and R = 0.25 (right).   
 

 
Figure 3.  The value of B at which the danger zone begins as a function of R, for BA = 1.  
 
 

5. Illustration: assimilation of IASI radiances into a global NWP system 
 
In this section, we assess the error characteristics of a 1D-Var problem that simulates the assimilation 
of IASI radiances using 4D-Var.  We start by examining the eigenvectors of B matrices for vertical 
profiles of temperature and humidity derived to be consistent with the B matrix used within the Met 
Office operational global NWP system as at December 2009.  The B matrices were derived by taking 
the covariance statistics of a set of column profiles of temperature and humidity representing random 
perturbations consistent with the 4D-Var statistics (Andersson et al., 2000). 
Figure 4 shows the 10 leading eigenvectors, ranked by order of decreasing eigenvalue, for humidity 
expressed as the natural logarithm of specific humidity, ln(q).  They form a “well-behaved” family of 
eigenvectors, with increasing vertical structure for humidity in the troposphere. 
 



 
 
Figure 4.  The leading 10 eigenvectors of BA for the vertical background error covariance used in 

4D-Var for the Met Office 70-level global NWP model, for humidity expressed as ln(q). 
 



 

 

 
Figure 5.  The leading 20 eigenvectors of BA for the vertical background error covariance used in 
4D-Var for the Met Office 70-level global NWP model, for temperature. 
 
Figure 5 shows the 20 leading eigenvectors for temperature.  By contrast, these show a more complex 
structure, with several of the modes which represent tropospheric structure also showing substantial 
contributions in the upper stratosphere and mesosphere.  Whilst such structures may not be “wrong”, 
they may have problematic consequences through a tendency to project observed tropospheric 
information into analysis increments at much higher levels, and vice versa.  At least some of the 
features appearing in the stratosphere and mesosphere are thought to result from a forecast model 
problem which is under investigation. 
 
Using these B-matrices, the IASI 1D-Var problem is simulated as follows:  As in the Met Office 
operational 1D-Var for IASI (Hilton et al., 2009), 183 channels are selected, of which 31 are in the 
water vapour band.  Two levels of observation error have been simulated: the instrument noise alone, 
and instrument noise plus forward model error (0.2K standard deviation) with an additional contribution 
for the effects of unmodelled trace gases (Collard, 2007; Hilton et al., 2009).  In contrast to the 70-level 
representation of the NWP profile shown in Figs 4 and 5 above, the analysis is performed on the 43 
pressure levels RTTOV radiative transfer model (Saunders et al, 1999; Saunders, 2002) using 
Jacobians for a US standard atmosphere.   



 
Using these inputs, the analysis error covariance in the eigen-space of B is calculated using eq.(12) 
and the standard deviations of analysis error (i.e. square roots of the diagonal elements) are compared 
with the equivalent values for the background error covariances.  Results are shown in Figures 6 and 
7, for both cases of observation error described above. 
 

 
 

 
 

Figure 6.  Standard deviations of analysis error and background error in the eigen-space of the 
background error covariance, for observation error variance = instrument noise variance + 
forward model error variance. 

 

 
 

 
 

Figure 7.  As Figure 6, but for observation error = instrument noise only.  
 
Figure 6 shows that the variance in ~12 eigen-modes for temperature and ~8 eigen-modes for humidity 
are significantly reduced by assimilation of the IASI radiances, and Figure 7 shows that the impact is 
enhanced when the observation error is reduced to the level of the instrument noise only.  However, 
these are only preliminary results requiring further investigation and analysis. 
 
 

6. Conclusions and further work 
 
The long-term goal of this work is to make retrievals/analyses robust against the inevitable errors in the 
background error covariance, which may be particularly important for effective assimilation of satellite 

sounder data.  We argue that, for NWP, it is the structure of the B matrix assumed by the data 
assimilation, BA, that is likely to be crucial to achieve the desired results, and hence it is the mis-



specification of this matrix that merits study. 
 
We have drawn attention to the existence of a “danger zone”: if the background error variance is over-
estimated by too large a factor, then the analysis errors are expected to be higher than background 
errors.  For a large range in the ratio of observation error to assumed background error, this factor lies 
in the range 2.2-4.0. 
 
We have examined the B-matrices for temperature and humidity implied by the background error 
statistics currently used in operational Met Office 4D-Var B-matrix.  For temperature, these structures 
reveal some potential problems for the assimilation of radiance investigation that merit further 
investigation.  We have also presented a preliminary analysis, in the eigen-space of this B-matrix, for 
the information extracted from IASI data by an assimilation system which uses this B-matrix.  This 
illustrates how the B-matrix effectively acts as a filter for different scales of information in the 
observations. 
 
We plan to extend this investigation and perform a more complete error analysis for IASI.  In this way, 
we aim to improve our understanding of the behaviour of the assumed B-matrix within the assimilation 
process on each vertical scale and, if necessary, to improve its representation.  Thus we aim to make 
our assumptions about background error statistics more robust against inevitable errors in these 
assumptions. 
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