Remote Sensing Fundamentals Part I:

Radiation and the Planck Function

Tim Schmit, NOAA/NESDIS ASPB

Material from:
Paul Menzel
UW/CIMSS/AOS

and Paolo Antonelli and others CIMSS

Cachoeira Paulista - São Paulo

We all are "remote sensors"

- Ears
- Eyes

Human Optical Detection System

- Brain
- continuous wave $10 \wedge 26$ Watts
- Matched to wavelength 0.5 um
- Sensitivity ~ 10 photons
- Servo-controlled (angle and aperture)
- 2 d array $\sim 10^{\wedge} 5$ elements
- Stereo and color
- Parallel connected to adaptive computer
- Detector weight $\sim 20 \mathrm{~g}$
- "Computer" weight $\sim 1 \mathrm{~kg}$

All satellite remote sensing systems involve the measurement of electromagnetic radiation.

Electromagnetic radiation has the properties of both waves and discrete particles, although the two are never manifest simultaneously.

Electromagnetic radiation is usually quantified according to its wave-like properties; for many applications it considered to be a continuous train of sinusoidal shapes.

The Electromagnetic Spectrum

Remote sensing uses radiant energy that is reflected and emitted from Earth at various "wavelengths" of the electromagnetic spectrum

Our eyes are sensitive to the visible portion of the EM spectrum

UV, Visible and Near-IR and IR and Far-IR

Electromagnetic Spectrum

wavelength λ : distance between peaks ($\mu \mathrm{m}$)

wavenumber v : number of waves per unit distance (cm)

$$
\begin{gathered}
\lambda=1 / v \\
d \lambda=-1 / v^{2} d v
\end{gathered}
$$

Radiation is characterized by wavelength λ and amplitude a^{7}

Visible
 (Reflective Bands)

Infrared
 (Emissive Bands)

Terminology of radiant energy

over a solid angle on the Earth
Radiance observed by
satellite radiometer

Terminology of radiant energy

Energy (Joules) from the Earth Atmosphere

Radiation from the Sun

The rate of energy transfer by electromagnetic radiation is called the radiant flux, which has units of energy per unit time. It is denoted by

$$
\mathrm{F}=\mathrm{dQ} / \mathrm{dt}
$$

and is measured in joules per second or watts. For example, the radiant flux from the sun is about $3.90 \times 10^{* *} 26 \mathrm{~W}$.

The radiant flux per unit area is called the irradiance (or radiant flux density in some texts). It is denoted by

$$
\mathrm{E}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA}
$$

and is measured in watts per square metre. The irradiance of electromagnetic radiation passing through the outermost limits of the visible disk of the sun (which has an approximate radius of $7 \times 10^{* *} 8 \mathrm{~m}$) is given by

$$
\mathrm{E}(\text { sun sfc })=\frac{3.90 \times 10^{26}}{4 \pi\left(7 \times 10^{8}\right)^{2}}=6.34 \times 10^{7} \mathrm{~W} \mathrm{~m}^{-2}
$$

The solar irradiance arriving at the earth can be calculated by realizing that the flux is a constant, therefore

$$
\mathrm{E}\left(\text { earth sfc) } \times 4 \pi \mathrm{R}_{\mathrm{es}}{ }^{2}=\mathrm{E}(\text { sun sfc }) \times 4 \pi \mathrm{R}_{\mathrm{s}}{ }^{2},\right.
$$

where $R_{\text {es }}$ is the mean earth to sun distance (roughly $1.5 \times 10^{11} \mathrm{~m}$) and R_{s} is the solar radius. This yields

$$
\mathrm{E}(\text { earth sfc })=6.34 \times 10^{7}\left(7 \times 10^{8} / 1.5 \times 10^{11}\right)^{2}=1380 \mathrm{~W} \mathrm{~m}^{-2} .
$$

The irradiance per unit wavelength interval at wavelength λ is called the monochromatic irradiance,

$$
\mathrm{E}_{\lambda}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA} / \mathrm{d} \lambda,
$$

and has the units of watts per square metre per micrometer. With this definition, the irradiance is readily seen to be

$$
\mathrm{E}=\int_{0}^{\infty} \mathrm{E}_{\lambda} \mathrm{d} \lambda .
$$

In general, the irradiance upon an element of surface area may consist of contributions which come from an infinity of different directions. It is sometimes necessary to identify the part of the irradiance that is coming from directions within some specified infinitesimal arc of solid angle $\mathrm{d} \Omega$. The irradiance per unit solid angle is called the radiance,

$$
\mathrm{I}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA} / \mathrm{d} \lambda / \mathrm{d} \Omega,
$$

and is expressed in watts per square metre per micrometer per steradian. This quantity is often also referred to as intensity and denoted by the letter B (when referring to the Planck function).

If the zenith angle, θ, is the angle between the direction of the radiation and the normal to the surface, then the component of the radiance normal to the surface is then given by $\mathrm{I} \cos \theta$. The irradiance represents the combined effects of the normal component of the radiation coming from the whole hemisphere; that is,

$$
\mathrm{E}=\int_{\Omega} \mathrm{I} \cos \theta \mathrm{~d} \Omega \quad \text { where in spherical coordinates } \mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{~d} \varphi .
$$

Radiation whose radiance is independent of direction is called isotropic radiation. In this case, the integration over $\mathrm{d} \Omega$ can be readily shown to be equal to π so that

$$
\mathrm{E}=\pi \mathrm{I} .
$$

Radiation is governed by Planck's Law

In wavelength:

$$
\begin{aligned}
\qquad \mathrm{B}(\lambda, \mathrm{~T}) & =\mathrm{c}_{1} /\left\{\lambda^{5}\left[\mathrm{e}^{\mathrm{c} 2 / \lambda \mathrm{T}}-1\right]\right\}\left(\mathrm{mW} / \mathrm{m}^{2} / \mathrm{ster} / \mathrm{cm}\right) \\
\text { where } & \lambda=\text { wavelength }(\mathrm{cm}) \\
& \mathrm{T}=\text { temperature of emitting surface }(\mathrm{deg} \mathrm{~K}) \\
& \mathrm{c}_{1}=1.191044 \times 10-8\left(\mathrm{~W} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}^{-4}\right) \\
& \mathrm{c}_{2}=1.438769(\mathrm{~cm} \mathrm{deg} \mathrm{~K})
\end{aligned}
$$

In wavenumber:

$$
\mathrm{B}(\mathrm{v}, \mathrm{~T})=\mathrm{c}_{1} \nu^{3} /\left[\mathrm{e}^{\mathrm{c} 2 v / \mathrm{T}}-1\right] \quad\left(\mathrm{mW} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}^{-1}\right)
$$

where $\quad v=$ \# wavelengths in one centimeter ($\mathrm{cm}-1$)

$$
\begin{aligned}
& \mathrm{T}=\text { temperature of emitting surface }(\mathrm{deg} \mathrm{~K}) \\
& \mathrm{c}_{1}=1.191044 \times 10-5\left(\mathrm{~mW} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}^{-4}\right) \\
& \mathrm{c}_{2}=1.438769(\mathrm{~cm} \mathrm{deg} \mathrm{~K})
\end{aligned}
$$

Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

Using wavelengths

Planck's Law

where

$$
\mathrm{c}_{2} / \lambda \mathrm{T}
$$

$$
\mathrm{B}(\lambda, \mathrm{~T})=\mathrm{c}_{1} / \lambda^{5} /\left[\begin{array}{ll}
\mathrm{e} & -1]
\end{array}\left(\mathrm{mW} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}\right)\right.
$$

$\lambda=$ wavelengths in cm
$\mathrm{T}=$ temperature of emitting surface (deg K)
$\mathrm{c}_{1}=1.191044 \times 10-5\left(\mathrm{~mW} / \mathrm{m}^{2} /\right.$ ster $\left./ \mathrm{cm}^{-4}\right)$
$\mathrm{c}_{2}=1.438769(\mathrm{~cm} \mathrm{deg} \mathrm{K})$

Wien's Law

$\mathrm{dB}\left(\lambda_{\text {max }}, \mathrm{T}\right) / \mathrm{d} \lambda=0$ where $\lambda(\max)=.2897 / \mathrm{T}$
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note $\mathrm{B}\left(\lambda_{\max }, T\right) \sim \mathrm{T}^{5}$.
∞
Stefan-Boltzmann Law $E=\pi \int B(\lambda, T) d \lambda=\sigma T^{4}$, where $\sigma=5.67 \times 10-8 \mathrm{~W} / \mathrm{m} 2 / \operatorname{deg} 4$. 0 states that irradiance of a black body (area under Planck curve) is proportional to T^{4}.

Brightness Temperature

$$
\mathrm{T}=\mathrm{c}_{2} /\left[\lambda \ln \left(\frac{\mathrm{c}_{1}}{\lambda^{5} \mathrm{~B}_{\lambda}}+1\right)\right] \text { is determined by inverting Planck function }{ }_{17}
$$

Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

- Wavelength C Wavenumber - Unnomalized C Normalized

Wave Min
0.10

Temp (K)
200.00

New Plot
Add Plot
Save JPEG

Using wavenumbers

Wien's Law $\quad \mathrm{dB}\left(v_{\max }, \mathrm{T}\right) / \mathrm{dT}=0$ where $v(\max)=1.95 \mathrm{~T}$
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note $\mathrm{B}\left(v_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{* *} 3$.

Stefan-Boltzmann Law $\mathrm{E}=\pi \int \mathrm{B}(\nu, \mathrm{T}) \mathrm{d} v=\sigma \mathrm{T}^{4}$, where $\sigma=5.67 \times 10-8 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{deg}^{4}$. 0 states that irradiance of a black body (area under Planck curve) is proportional to T^{4}.

Brightness Temperature

$$
T=c_{2} v /\left[\ln \left(\frac{c_{1} v^{3}}{B_{v}}+1\right)\right] \text { is determined by inverting Planck function }
$$

Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

C Wavelength C Wavenumber

- Unnomalized C Normalized Wave Min 10.00 Wave Max 10000.00
Temp (K) 200.00

New Plot

Save JPEG

Using wavenumbers

$$
\mathrm{c}_{2} \mathrm{v} / \mathrm{T}
$$

$$
\mathrm{B}(v, \mathrm{~T})=\mathrm{c}_{1} v^{3} /\left[\begin{array}{ll}
\mathrm{e} & -1]
\end{array}\right.
$$ ($\mathrm{mW} / \mathrm{m}^{2} /$ ster $/ \mathrm{cm}^{-1}$)

$v($ max in $\mathrm{cm}-1)=1.95 \mathrm{~T}$
$\mathrm{B}\left(v_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{* *} 3$.
∞
$\mathrm{E}=\pi \int \mathrm{B}(v, \mathrm{~T}) \mathrm{d} v=\sigma \mathrm{T}^{4}$, 0
$T=c_{2} v /\left[\ln \left(\frac{c_{1} v^{3}}{B_{v}}+1\right)\right]$

Using wavelengths

$$
\mathrm{c}_{2} / \lambda \mathrm{T}
$$

$\mathrm{B}(\lambda, \mathrm{T})=\mathrm{c}_{1} /\left\{\lambda^{5}\left[\begin{array}{ll}\mathrm{e} & -1]\end{array}\right\}\right.$ ($\mathrm{mW} / \mathrm{m}^{2} /$ ster $/ \mu \mathrm{m}$)
$\lambda($ max in cm$) \mathrm{T}=0.2897$
$\mathrm{B}\left(\lambda_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{* * 5}$.

$\mathrm{T}=\mathrm{c}_{2} /\left[\lambda \ln \left(\frac{\mathrm{c}_{1}}{\lambda^{5} \mathrm{~B}_{\lambda}}+1\right)\right]$

Temperature sensitivity

$$
\mathrm{dB} / \mathrm{B}=\alpha \mathrm{dT} / \mathrm{T}
$$

The Temperature Sensitivity α is the percentage change in radiance corresponding to a percentage change in temperature

Substituting the Planck Expression, the equation can be solved in α :

$$
\alpha=c_{2} v / T
$$

File Edit View Insert Tools Desktop Window Help

(Approximation of) B as function of α and T

$\Delta \mathrm{B} / \mathrm{B}=\alpha \Delta \mathrm{T} / \mathrm{T}$

Integrating the Temperature Sensitivity Equation Between $T_{\text {ref }}$ and $T\left(B_{\text {ref }}\right.$ and $\left.B\right)$:
$\mathrm{B}=\mathrm{B}_{\mathrm{ref}}\left(\mathrm{T} / \mathrm{T}_{\mathrm{ref}}\right)^{\alpha}$

Where $\alpha=c_{2} v / T_{\text {ref }}$ (in wavenumber space)

$$
\begin{gathered}
\left.\mathrm{B}=\mathrm{B}_{\mathrm{ref}} \mathrm{~T} / \mathrm{T}_{\mathrm{ref}}\right)^{\alpha} \\
\Downarrow \downarrow \\
\mathrm{B}=\left(\mathrm{B}_{\text {ref }} / \mathrm{T}_{\text {ref }}^{\alpha}\right) \mathrm{T}^{\alpha} \\
\downarrow \\
\mathrm{B} \propto \mathrm{~T}^{\alpha}
\end{gathered}
$$

The temperature sensitivity indicates the power to which the Planck radiance depends on temperature, since B proportional to T^{α} satisfies the equation. For infrared wavelengths,
$\alpha=\mathrm{c}_{2} \mathrm{v} / \mathrm{T}=\mathrm{c}_{2} / \lambda \mathrm{T}$.

Wavenumber	Typical Scene Temperature	Temperature Sensitivity
900	300	4.32

Temperature Sensitivity of $B(\lambda, T)$ for typical earth scene temperatures

C Wavelength C Wavenumber
C Unnormalized
C Normalized
Wave Min
1.00
Wave Max
300.00
Temp (K)
200.00
New Plot
Add Plot
Save JPEG

$B(10 u m, T) / B(10 u m, 273) \propto T^{4}$

$B(10$ um,273 $)=6.1$
$B(10$ um,200 $)=0.9 \rightarrow 0.15$
$B(10 u m, 220)=1.7 \rightarrow 0.28$
$B(10$ um,240 $)=3.0 \rightarrow 0.49$
$B(10$ um,260 $)=4.7 \rightarrow 0.77$
$B(10$ um,280 $)=7.0 \rightarrow 1.15$
$B(10 u m, 300)=9.9 \rightarrow 1.62$

$B(4 u m, T) / B(4 u m, 273) \propto T^{12}$

$B(4 \mathrm{um}, 273)=2.2 \times 10^{-1}$ $B(4$ um,200 $)=1.8 \times 10^{-3} \rightarrow 0.0$ $B(4$ um,220 $)=9.2 \times 10^{-3} \rightarrow 0.0$ $B(4$ um,240 $)=3.6 \times 10^{-2} \rightarrow 0.2$ $B(4$ um,260 $)=1.1 \times 10^{-1} \rightarrow 0.5$ $B(4$ um,280 $)=3.0 \times 10^{-1} \rightarrow 1.4$ $B(4$ um,300 $)=7.2 \times 10^{-1} \rightarrow 3.3$

$B(0.3 \mathrm{~cm}, \mathrm{~T}) / \mathrm{B}(0.3 \mathrm{~cm}, 273) \propto \mathrm{T}$

$B(0.3 \mathrm{~cm}, 273)=2.55 \times 10^{-4}$
$B(0.3 \mathrm{~cm}, 200)=1.8 \rightarrow 0.7$
$B(0.3 \mathrm{~cm}, 220)=2.0 \rightarrow 0.78$
$\mathrm{B}(0.3 \mathrm{~cm}, 240)=2.2 \rightarrow 0.86$
$B(0.3 \mathrm{~cm}, 260)=2.4 \rightarrow 0.94$
$B(0.3 \mathrm{~cm}, 280)=2.6 \rightarrow 1.02$ $B(0.3 \mathrm{~cm}, 300)=2.8 \rightarrow 1.1$

Radiation is governed by Planck's Law

$$
\mathbf{B}(\lambda, T)=\mathrm{c}_{1} /\left\{\lambda^{5}\left[\mathrm{e}^{\mathrm{c}_{2} / \lambda \mathrm{T}}-1\right]\right\}
$$

In microwave region $c_{2} / \lambda T \ll 1$ so that

$$
\mathrm{e}^{\mathrm{c}_{2} / \lambda T}=1+\mathrm{c}_{2} / \lambda T+\text { second order }
$$

And classical Rayleigh Jeans radiation equation emerges

$$
\mathbf{B}_{\lambda}(\mathbf{T}) \approx\left[\mathbf{c}_{1} / \mathbf{c}_{2}\right]\left[\mathbf{T} / \lambda^{4}\right]
$$

Radiance is linear function of brightness temperature.

UV - NEAR IR Atmospheric Transmission Spectra (0.5-3 microns)

Near-IR - FAR IR Atmospheric Transmission Spectra (2-15 microns)

Radiance to Brightness Temperatures

Via Planck function, but need to take into account the spectral width of the given band.

Above: GOES-12 and MSG 3.9um SRF and night-time spectra. GOES-12 BT: 288.278K MSG BT: 284.487 GOES-MSG: 3.791K

Above: GOES-12 and MSG 13.3/13.4um SRF and spectra. GOES-12 BT: 270.438K MSG BT: 268.564 K GOES-MSG: 1.874 K

Visible and near-IR channels on the ABI

GOES-10 Imager and Sounder have one visible band near 0.6^{4} um

Reflectance Ratio Test Basis

Based on our knowledge of reflectance spectra, we can predict:

R2/R1 = 1.0 for cloud (if you can't see the surface underneath)
R2/R1 > 1.0 for vegetation (look at pinewoods spectra)
R2/R1 < 1.0 for water
R2/R1 about 1 for desert

Glint is a big limiting factor To this test over oceans.

Also, smoke or dust can look Like cloud in R2/R1.

Visible: Reflective Bands

Used to observe solar energy reflected by the Earth system in the:

- Visible between 0.4 and $0.7 \mu \mathrm{~m}$
- NIR between 0.7 and $3 \mu \mathrm{~m}$

About 99\% of the energy observed between 0 and $4 \mu \mathrm{~m}$ is solar reflected energy
Only 1% is observed above $4 \mu \mathrm{~m}$

Sensor Geometry

Electronics

Field Of View

Ocean: Dark
Vegetated Surface: Dark

NonVegetated
Surface: Brighter
Clouds: Bright
Snow: Bright
Sunglint

Vegetated Surface: Dark

NonVegetated Surface: Brighter

Clouds: Bright
Snow: Bright
Sunglint

Ocean：Dark
Vegetated Surface：Dark

NonVegetated
Surface：Brighter
Clouds：Bright
Snow：Bright

Sunglint

目为 σ_{0} / Φ 回

Linden_shadow_1.581_1.640um

Shadow

Linden_vegetation_0.831_0.889

Linden_0.577_0.696_um

Linden_haze_0.439_0.498um

Smoke

- With 12 bits 2^{12} integer numbers can be represented
- Given $\Delta \mathrm{R}$, the range of radiances we want to observe, the smallest observable variation is $\Delta R / 2^{12}$
- Given dR smallest observable variation, the range of observable radiances is $\mathrm{dR}^{*} 2^{12}$
- If too small of the range is used, then the quantification error range is larger. If the range is too large, then there is more possbility for 'saturation'.

GOES-10 Imager is 10-bit, while the GOES-10 sounder in 13bit. MODIS data is 12-bit.
dR

ΔR

Global Mean Energy Balance

Global Mean Energy Balance Top of the Atmosphere

Reflected Solar Radiation (30\%)

Outgoing Infrared Radiation (70\%)

