
Assimilation of loudy AIRS observation in the Frenh globalatmospheri model: ARPEGET.Pangaud, V.Guidard, N.Fourrié, F.Rabier, P.PoliMétéo-Frane/CNRM-CNRS/GAMEJuly 9, 2008AbstratInfrared and mirowave lear-sky observations from polar orbiting satellites are assimilated inthe Frenh numerial weather predition (NWP) model ARPEGE through a 4 dimensional varia-tional (4D-Var) assimilation sheme and represent an important soure of information. Sine the endof 2006, a few stratospheri hannels of the Atmospheri InfraRed Sounder (AIRS) are assimilatedin ARPEGE. On the other hand, a large majority of measurements from suh advaned infraredsounders are a�eted by louds, and loud ontaminated observations are urrently rejeted by thedata assimilation system. The observation operator whih simulates the radianes from model �eldsinlude a radiative transfer model, RTTOV in the ase of ARPEGE. Sine louds an a�et the in-frared observations, a loud detetion is neessary before data are assimilated. Several loud detetionshemes have been used: a loud detetion sheme based on hannel ranking, alled Cloud-Detet,from the ECMWF; a CO2-sliing method and a loud detetion based on the simulation of the seasurfae temperature. Previous studies have shown that the two �rst loud detetion shemes are themost aurate ones. This paper fouses on the validation of both shemes applied to AIRS, by usingindependent data oming from the MODIS imager and from the POLDER radiometer. The validationof the loud top pressure will also be disussed. It is now well known that the sensitive regions, whereylogeneses our, are often loudy. This motivates our researh e�orts to assimilate AIRS loudyradianes inside the 4D-Var assimilation sheme.Two approahes may be tested: the �rst one uses theloud top pressure and the loud over derived from the CO2-sliing tehnique (CO2-sliing outputsare diretly used by RTTOV to simulate the loud-a�eted spetrum). In the seond one, CO2-sliingoutputs are adjusted by a prior 1D-VAR before being used by RTTOV. Preliminary experiments havebeen done whih onsisted in assimilating AIRS radianes, inluding those ontaminated by loudsbetween 600 and 950 hPa, only over sea for 54 stratospheri and tropospheri peaking hannels. Aslightly positive impat is found for the �rst method. The impat of the loudy assimilation on loud�elds in ARPEGE will be studied in this paper.1 IntrodutionInfrared and mirowave lear-sky observations from polar orbiting satellites are assimilated in the FrenhNumerial Weather Predition (NWP) global model ARPEGE through a 4 dimensional variational (4D-Var) assimilation sheme and represent an important soure of information. The Atmospheri InfraredSounder (AIRS) onboard Aqua satellite makes part of a new generation of advaned satellite sounding in-struments (with IASI) whih allows to provide information about atmospheri temperature and humiditypro�les with spetral resolution far exeeding that of previous sounders (HIRS). These highly informa-tive observations are to be used to improve NWP analysis and foreast auray. On the other hand, alarge majority of measurements from suh advaned infrared sounders are a�eted by louds (90%), andloud-ontaminated observations are urrently rejeted by the data assimilation system beause of thede�ienies in the representation of loud proesses within the atmospheri models. Furthermore, it isnow well known that the sensitive regions, where ylogeneses our, are often loudy (MNally, 2002;Fourrié and Rabier, 2004). This motivates our researh e�orts to assimilate AIRS loudy radianes insidethe 4D-Var assimilation sheme. 1
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Sine louds an a�et the infrared observations, louds have to be deteted before data are assimi-lated. Indeed, un�ltered loud observations an have a negative impat on the quality of NWP analysis.Several loud detetion shemes have been used: a loud detetion sheme based on hannel ranking,alled Cloud-Detet, from the ECMWF (European Centre for Medium-range Weather Foreast); a CO2-sliing method and a loud detetion based on the simulation of the sea surfae temperature. Previousstudies have shown that the two �rst loud detetion shemes are the most aurate ones (Dahoui.M.,2005).This paper �rst fouses on the validation of both shemes applied to AIRS, by using independentdata oming from the MODIS (Moderate Resolution Imaging Spetroradiometer) imager. The validationof the loud top pressure will also be disussed for the CO2-Sliing sheme. After the validation of bothloud shemes, the method used to diretly assimilate loudy radianes in the 4D-VAR assimilation shemeof ARPEGE will be presented in a third part. The results in term of impat on the quality of the analysisprodut and on the auray of the foreast of this �rst step of assimilation of loudy radianes will thenbe disussed.2 Validation of AIRS louds detetion shemes2.1 AIRS louds detetion sheme2.1.1 ECMWF shemeThe ECMWF sheme (MNally and Watts, 2003) aims at deteting lear hannels within a measuredspetrum rather than the loation of totally lear pixels. If the bakground spetrum is lose enough fromthe true state of atmosphere, the loud signature is identi�ed by the �rst-guess departure of the observedspetrum from lear-sky bakground values. Channels are �rst re-ordered into a vertially ranked spaethat re�ets their relative sensitivity to the presene of loud. The ranking onsists in assignating foreah hannels, a pressure level pi (in RTTOV oordinates) at whih the radiation e�et of a one-layerblak loud de�ned as |Rclear−R
pi
cld

|

Rclear
at pi is less than 1%. Rclear denotes the simulated lear radiane and

R
pi

cld denotes the simulated blak-body radiane at the loud level pi.A low-pass �lter is then applied to the ranked departures to redue the instrument noise and the loudemissivity e�et.Finally a searh for the hannel at whih a monotonially growing departure an �rst be detetedpermits to determine the �rst signi�ant loud ontamination. Having found this hannel, all hannelsranked less sensitive are �agged loud free and all hannels ranked more sensitive are �agged loudy.2.1.2 CO2-Sliing shemeThe CO2-Sliing method (Chahine, 1974; Menzel, 1983), based on radiative transfer priniples, is ur-rently used to retrieve loud-top pressure (CTP) and e�etive loud emissivity or e�etive loud amount(ECA). This method uses a simplisti loud model: loud is onsidered as a single layer of opaque orsemi-transparent thin loud with an homogeneous emissivity. The algorithm uses observed radianes ofa set of AIRS hannels seleted in the CO2 absorption band: 124 hannels situated in the spetral bandbetween 649 m−1 and 843 m−1 (whih is very sensitive to the presene of louds) are used for thisstudy. For eah AIRS pixel, and for eah hannel of the set, the following funtion is alulated:
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,where:

• p: pressure level number,
• k: hannel inthe CO2 band,
• kref : referene window hannel (979,1279 m−

1),
• R

k
meas: measured radiane in hannel k, 2
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• R
k
clear: simulated lear radiane in hannel k,

• R
k,p
cld : simulated blak-body radiane for hannel k at the loud level p.The loud-top pressure level pc,k assigned to eah hannel k is the pressure level whih minimizes thefuntion Fk,p. Before the determination of the CTP of an hypotheti loud, a �lter whih distinguishhannels with δTBs (δTBs represents the di�erene between observed brightness temperature and simu-lated brightness temperature) lower than the radiometri noise is applied to the algorithm. If all hannelsare �ltered, the pixel is �agged lear.If the pixel is loudy, the loud-top pressure pc is then alulated by the following expression:

pc =

P

pc,kw2

k
P

w2

kwhere wk = δFk,p/δlnp is the derivative of the loud pressure funtion.The e�etive emissivity is obtained for eah AIRS pixel by the following expression:
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kref
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meas)
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)If the algorithm produes a retrieved Ne smaller than 0.1, the pixel is �agged lear. The pixel is rejetedif the algorithm generates a retrieved Ne lower than 0 or larger than 1.2 (non physial emissivity).2.2 A validation based on independant datas: the imager MODIS2.2.1 MODIS loud desriptionThe �rst part of this study aims at statistially omparing both above-desrived loud-detetion shemesapplied to AIRS data onboard Aqua satellite. Independent data are thus required to get an auratereferene. For this study, we have used a loud-detetion sheme produt based on MODIS data. TheMODIS imager is a key instrument onboard the EOS Terra and Aqua satellites whih provides globalobservations of Earth's land, sea and atmosphere in 36 spetral bands ranging from 0.41 µm to 14.385 µm(visible, near infrared and infrared regions). In this study we have used the MODIS Cloud data produt�le MYD06-L2, ontaining level 2 data olleted from the Aqua platform. The determination of loud-topproperties will require the use of MODIS bands 29 and 31 to 36, along with the loud-mask produt tosreen for louds. Two output parameters were retrieved to validate our loud-detetion shemes: theCloud-Fration (Day and Night) and the Cloud-Top-Pressure (Day and Night). These level-2 CloudProdut parameters are produed at an horizontal resolution of 5 km at nadir and over a �ve-minutetime interval. We have used in this study, Cloud data produts from the ICARE entre (http : //www−

icare.univ − lille1.fr/archive/index.php?dir = MODIS/MY D06L2/) whih produes and distributesremote sensing datas derived from Earth observation missions from CNES, NASA and EUMETSAT.2.2.2 Spatial olloation of MODIS and AIRSAs noted above, MODIS loud produt will be used to evaluate the auray of AIRS loud detetionsheme. This requires a MODIS loud desription for eah AIRS pixels. Beause MODIS and AIRSare two independant instruments with di�erent sanning geometry and resolution, the merge of MODISinto AIRS geometry is neessary. The �rst step is to represent eah AIRS pixels as an oversized irleaording to Tobin method (Tobin et al., 2006): eah diameter of AIRS pixel is 10% oversized; the nadirfootprint is then onsidered as a irle with a diameter of 14.85 km (instead of 13.5 km) and at themaximum san angle of 49, 5
o, the footprint is onsidered as a irle 36.3 km (instead of an ellipsis whiha 33 km-long major axe). The representation of AIRS footprints as irle leads to a better omputationale�ieny in ase of large sale olloation with as good results as without this approximation. The seondstep is to determine MODIS pixels that are geoloated within the AIRS footprint determinated above bya mapping algorithm. Finally, the third step is to ompute the weighted average of eah MODIS pixelsvalues (in funtion of the relative distane between the geoloated MODIS pixel and the enter of theAIRS irle) geoloated within a AIRS footprint. 3
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2.3 Comparison of the ECMWF sheme and the CO2-Sliing sheme withMODIS imager2.3.1 Data setsDue to downloading ressoure limitations, the omparison is limited to the Atlanti region from 60
o Southto 60

o North ; only situations over sea have thus been proessed. The validation is performed within aten day and ten night period: from 01 to 10 September 2006. The validation was performed from 13h00to 15h30 UTC during daytime and from 02h00 to 04h30 UTC during night-time (when AQUA is aboveAtlanti oean). A total of 6538 AIRS pixels during daytime and 9168 AIRS pixels during night-timehave been proessed. For both loud-detetion algorithms, the same subset of 124 hannels is used (thosesituated in the CO2 band).2.3.2 Results and disussionOne AIRS and MODIS data are olloated, ategorial ontingeny tables will split data into 4 di�erentategories (see following table) whih will then be used to ompute some veri�ation sores to evaluatethe auray in term of detetion of both loud-detetion sheme.HITS FALSE ALARMS foreasted loudMISSES CORRECT REJECTIONS non foreasted loudobserved loud non observed loud N=totalThe veri�ation sores are :
• the frequeny bias (BIAS) whih gives the ratio of the foreast loud frequeny to the observedloud frequeny:

BIAS =
HITS + FALSEALARMS

HITS + MISSES

• the proportion of orret (PC) whih gives the fration of all foreasts (by MODIS) that wereorret:
PC =

HITS + CORRECTREJECTIONS

N

• the probability of detetion (POD and POD') whih measures the fration of observed events thatwere orretly foreast by MODIS (POD is a loudy pixel event and POD' is a lear pixel event):
POD =

HITS

HITS + MISSES

POD
′
=

CORRECTREJECTIONS

CORRECTREJECTIONS + FALSEALARMS

• the false alarm ratio (FAR) whih gives the fration of foreast event that were observed to benon-events:
FAR =

FALSEALARMS

HITS + FALSEALARMS

• the non detetion rate (NDR) whih measures the fration of observed events that were badlyforeast:
NDR = 1 − POD4
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In this study, lear/loudy thresholds have been hosen aording to Lavanant (Lavanant et al., 2004): apixel is �agged loudy by MODIS if the retrieved loud fration is more than 5% and a pixel is �aggedloudy by CO2-Sliing if the retrieved loud fration is more than 10%. With the Cloud-Detet sheme,a pixel is �agged loudy if all hannels used in this algorithm are loud-free. As mentionned in part 2.1.2,the CO2-Sliing sheme an produe a non physial retrieved Ne. Aording to Dahoui (Dahoui.M.,2005), these pixels with non-physial Ne are lear in most of ases but we have notied that some of thesepixels are �agged loudy by MODIS (about 30%) and we thus made the hoie not to evaluate thesepixels.The following table gives the main results in term of auray of detetion for both loud-detetionsheme during day and night: Cloud-Detet CO2-SliingDay Night Day NightBIAS 89% 83% 83% 87%PC 80% 76% 78% 80%POD 82% 78% 78% 82%POD' 65% 63% 76% 63%FAR 6% 6% 7% 7%NDR 18% 22% 22% 18%Results show that a small perentage of "FALSE ALARMS" is found for both shemes: between 6 and8% and between 3.5 and 4.5% respetively for the Cloud-Detet sheme and the CO2-Sliing sheme (notshown). These perentages an mainly be explained by two reasons: (i) the bias orretion ould benot stringent enough and systemati biases remain and (ii) shemes are tuned to rejet some doubtfullear pixels instead of assimilate a loudy pixel as a lear one (Dahoui.M., 2005). A small perentageof "MISSES" is also found for both shemes (about 20% for the Cloud-Detet sheme and 18% for theCO2-Sliing sheme): it an be explained by (i) the lower spatial resolution of AIRS aording to MODIS(13.5 km against 5 km) whih prevent the detetion of frational louds (sub-pixel louds) by AIRS; (ii)the weakness of both loud detetion shemes to detet low louds (as we will see below). However, thisperentage is not due to a bad hoie of lear/loudy threeshold for MODIS (5%) as results are worstwith a 10% threeshold (not shown).As we an see in the above-writen table, the Cloud-Detet sheme seems to produe better resultsduring daytime: 89% (BIAS) of foreast louds are atually observed (83% during night-time), 82%(POD) of the observed louds are atually foreast (78% during night-time), the detetion of lear pixels(POD') and the proportions of orret (PC) are also better during daytime. An opposite diagnostian be made for the CO2-Sliing sheme: both BIAS, PC and POD are better from 2 to 4 % duringnight-time. POD', muh better during daytime, is the only remaining exeption for the CO2-Sliing.These day/night statistis are made under the hypotesis of same performanes of MODIS during the dayand during the night. Although a sea surfae temperature (SST) test has been implemented to improvethe MODIS loud mask during the night (Baum, 2006), we did not �nd any study whih ompare theday/night performanes of the MODIS loud mask.Furthermore, performanes of both shemes are omparable in BIAS, PC, POD, FAR and NDR(the CO2-Sliing is more aurate than Cloud-Detet during night-time but the latter is more aurateduring daytime). However, the detetion of lear sky pixel whih is omparable for both shemes duringnight-time is muh more performant for CO2-Sliing during daytime.Figure 1 highlights the auray of loud detetion (POD) aording to loud-top pressure for bothshemes in a diurnal yle. As we an see, the detetion of high louds (loud-top pressure <400 hPa)is better during night-time (exept betwen 300 and 400 hPa for the Cloud-Detet sheme). This ouldbe explained to a better auray of the SST used in both sheme during night-time. Performanes ofboth shemes are omparable during night-time but the Cloud-Detet is more performant to detet thiskind of loud during daytime. The detetion of medium louds (between 400 and 800 hPa) delivers thebest results. This detetion is better for CO2-Sliing during night-time than for the Cloud-Detet butthe latter is better during day-time. Finally the detetion of low louds (loud-top pressure >800 hPa)delivers the worst results. This detetion is better during night-time for both shemes.5
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Figure 1: E�ieny of the loud detetion aording to the retrieved PTOP from MODIS. Validationfrom 09/01/06 to 09/10/06. The thik solid line represents the potential of detetion of louds of theCO2-Sliing during the day, the thih dashed line represents the potential of detetion of louds of theCloud-Detet during the day, the thin solid line represents the potential of detetion of louds of theCO2-Sliing during the night and the thin dashed line represents the potential of detetion of louds ofthe Cloud-Detet during the night
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co2−slicing(b) NIGHTFigure 2: Cloud Top Pressure auray for CO2-Sliing for Day (left) and Night (right) aording toMODIS Cloud Top Pressure. Validation from 01/09/06 to 10/09/06The retrieved PTOP from CO2-Sliing exhibits a quite good orrelation with the PTOP inferred withMODIS for both day (�gure 2(a)) and night (�gure 2(b)). This result seems normal beause the MODISloud height is based on a CO2-Sliing method. The di�erene observed in �gure 2 (speially for low6
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louds) are thus mainly due to the omplexity of the situation and to the inertitude of both instruments.We an notie a better orrelation for high and medium louds (from 100 to 500 hPa) than for low louds(from 600 to 1000 hPa). Highlighting a trend here is not obvious but for the majority of pixels, theCO2-Sliing puts the loud higher than MODIS (espeially during the night).3 Assimilation of loud-a�eted Infra-red satellite radianesIn the previous hapter, the loud detetion sheme validation permitted �rst to onsolidate our skill interm of assimilation of lear radianes, namely a good detetion and rejetion of pixels ontaminated bylouds. With the CO2-Sliing method, tools are also made available to lassify an AIRS pixels in funtionof the nature of a potential loud. In the following hapter we will use these haraterization tools toassimilate loudy radianes.3.1 Methodology : diret use of the CO2-Sliing loud parametersThe observation operator for the assimilation of loudy radianes onsists in this work of a loud sheme(CO2-Sliing) and a radiative transfer model (RTM), RTTOV : in this approah, loud parameters (CTPand ECA) are retrieved from infrared radiane measurements using the CO2-Sliing algorithm and arethen diretly used as inputs of RTTOV whih will then simulate the loud-a�eted spetrum. In thismethod, ECA and CTP are thus determined in the beginning of the assimilation yle with no adjustmentsduring the minimisation.3.2 Simulation study framework3.2.1 Satellite dataThis study uses data from AIRS. We have used in this study a subset of 54 hannels loated in the temper-ature long-wave window hosen among the 2378 hannels available on AIRS instrument: 20 stratospherihannels with weighting-funtions peaking from 69 to 102 hPa and 34 upper-tropospheri hannels withweighting-funtions peaking from 122 to 478 hPa. This hannel subset is is the operationnal one inMétéo-Frane sine July 2008. The assimilation period of this study is 5 week long, from the 01/09/06to the 05/10/06. First experiments have been run in a simpli�ed framework: AIRS radianes have beenassimilated, inluded those ontaminated by louds between 600 and 950 hPa, only over sea.3.2.2 Model dataThe NWP model used in this work is ARPEGE (Courtier et al., 1991) whih is Météo-Frane operationalglobal model. The ode version used here is the CY32t0 with a 4 dimensional variational (4D-VAR)assimilation. Satellite radiane data are bias orreted using the variational bias orretion VarBC (Dee,2004; Auligné et al., 2007). As we have seen in the part 3.1, the model needs a RTM to simulate radianesfrom atmospherial, geophysial and spetrosopial variables. In this work, we use a fast RTM, the 8.5version of RTTOV whih is the operational version of RTTOV in Météo-Frane.Two di�erent types of experiments have been run to test the impat of the diret assimilation ofloudy radianes: the �rst one (B0A8) assimilates loudy radianes in the on�guration presented in part3.1; the seond one (B0A9) is a referene experiment whih only assimilates lear radianes, similarly toan operational on�guration.3.3 Results3.3.1 Impat on analysesThe impat of the assimilation of loudy radianes on the analysis will be evaluated by omparing biasesand root mean square (RMS) errors of both analyses and bakground with respet to various observations,for the experiment and the referene. This impat will be evaluated over 18 days, from the 12/09/06 tothe 30/06/09. 7
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We �rst an remark that RMS errors are almost not impated by the assimilation of loudy radianes(not shown). On the other hand, both bakground and analysis biases are improved at many geographiloations and for many parameters. We have only shown in this paper the most signi�ant improvements:
• improvements of bakground and analysis biases to onventional data in Northern Hemisphere:temperature (�gure 3(b)) and zonal winds (�gure 3(a)) from radiosoundings) and zonal and merid-ional winds from winds pro�lers (�gure 3()). All these improvements are better for bakgroundbiases then for analysis biases.
• improvements of bakground and analysis biases for satellites data: espeially for SSMI in theTropis (�gure 3(d)) and AMSU-A in northern hemisphere (not shown).
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(b) Temperature from radiosonde in HN
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() Meridional wind from wind pro�lers in HN
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(d) SSMI in TropisFigure 3: Biases from B0A8 and B0A9 (ref) from 12 to 30/09/06. The solid-blak line represents thebakground departure of B0A8, the dot-blak line represents the analysis departure of B0A8, the dot-dashed red line represents the analysis departure of B0A9 (ref) and the dashed-red line represents thebakground departure of B0A9 (ref)3.3.2 Impat on foreastsThe impat of the assimilation of loudy radianes on the foreasts will be determined by omparing theforeast objetive sore with respet to radiosoundings data from both experiment and referene. Thisimpat is globally neutral for wind and humidity. 8
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For the geopotential (�gure 4(a) and �gure 4(b)), we an notie a signi�ant improvement of theforeast in the stratosphere for all domains and for all ranges of foreast.For the temperature (�gure 5(a) and �gure 5(b)), the impat is less signi�ant but still positive,espeially over Europe and in Tropis. This impat is mainly situated in the tropophere.
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4 Conlusion and future developmentsThe goal of this paper was �rst to validate two loud-detetion shemes: The Co2-Sliing and the Cloud-Detet sheme. We have seen that both shemes exhibit quite good results and omparable performanes,with best performanes during day for the Cloud-Detet sheme and best performanes during night forthe CO2-Sliing. The loud detetion performanes �utuates with respet to the elevation of the loudonsidered: the detetion is better for medium louds (400-800 hPa) and worse for low louds (800-1000hPa) for both shemes. We have also seen that the retrieved PTOP from CO2-Sliing exhibits a quitegood orrelation with the PTOP inferred from MODIS for both day and night. We also have notied abetter orrelation for high and medium louds (from 100 to 500 hPa) than for low louds (from 600 to1000 hPa).One the validation of both loud-detetion shemes made, we have used the CO2-Sliing loud-haraterization tools to diretly assimilate loudy radianes in ARPEGE, in a simpli�ed framework.First results are promising in term of improvement on analyses and foreasts : analyses and bakgroundbiases are redued for most of onventional data and for some of satellites data. Foreasts are alsoimproved espeially for geopotential and temperature.The next step will onsists in assimilating loudy radianes in a more realisti framework: assimilationof loudy radianes between 400 and 950 hPa over sea and over land. Others assimilation tehniqueswill also be onduted: in a �rst time, a prior adjusment of loud parameters by a 1D-VAR shemebefore being used by RTTOV ould help to redue haraterizations errors (detetion of low louds andsome araterisation errors in term of loud-over or CTP). In a seond time, the adjustment of loudparameters ould be made into the 4D-Var minimization proess so as to obtain loud parameters moreonsistent with others ontrol variable. The assimilation of loud-a�eted radianes will then be extendedto IASI data.ReferenesAuligné, T., T. MNally, and D. Dee (2007). Adaptive bias orretion for satellite data in a numerialweather predition system. Q. J. R. Met. So. in press.Chahine, M. (1974). Remote sounding of loudy atmospheres. i the single loud layer. J.Atmos. Si. 31,233�243.Courtier, P., C. Freydier, F. Rabier, and M. Rohas (1991, Sept.). The ARPEGE Projet at Météo-Frane. ECMWF Seminar Proeedings 7, 193�231.Dahoui.M., Lavanant.L., R. A. (2005). Use of modis imager to help dealing with airs loudy radianes.Q. J. R. Met. So. 131, 2559�2579.Dee, D. (2004). Variational bias orretion of radiane data in the ECMWF system.Fourrié, N. and F. Rabier (2004). Cloud harasteristis and hannel seletion for IASI radianes inmeteorologially sensitive areas. Q. J. R. Met. So. 130, 1839�1856.Lavanant, L., M. Dahoui, F. Rabier, and T. Auligné (2004). Cloud detetion for IASI/AIRS usingimagery.MNally, A. (2002). A note on the ourene of loud in meteorologially sensitive areas and theimpliations for advaned infrared sounders. Q. J. R. Met. So. 128, 2551�2556.MNally, A. and P. Watts (2003). A loud detetion algorithm for high spetral resolution infraredsounders. Q. J. R. Met. So. 129, 3411�3423.Menzel, W., S. T. S. (1983). Improved loud motion wind vetor and altitude assignment using vas.Tobin, C., H. Reveromb, C. Moeller, and S. Pagano (2006). Use of atmospheri sounder high-speteal resolution spetra to assess the alibration of modis on eos aqua. J. Geophys. Res. 111,D09S05,doi:10.1029/2005JD006095.
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