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Using wavelengths 

                      c2/λT 
Planck’s Law   B(λ,T)  =  c1 / λ5 / [e         -1]     (mW/m2/ster/cm) 
           where λ =  wavelengths in cm 
   T = temperature of emitting surface (deg K) 
   c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4) 
   c2 = 1.438769 (cm deg K) 
 
Wien's Law   dB(λmax,T) / dλ = 0 where λ(max)  = .2897/T 
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) 
with temperature increase.  Note B(λmax,T) ~ T5.  
                      ∞ 
Stefan-Boltzmann Law  E  =  π ∫ B(λ,T) dλ =  σT4, where σ = 5.67 x 10-8 W/m2/deg4. 
                        o 
states that irradiance of a black body (area under Planck curve) is proportional to T4 .  
Brightness Temperature 
                            c 1 
  T  =  c2 / [λ ln( _____ + 1)]  is determined by inverting Planck function 
                                  λ5Bλ 
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Spectral Distribution of Energy Radiated  
from Blackbodies at Various Temperatures 
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Temperature Sensitivity of B(λ,T) for typical earth scene temperatures  
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Spectral Characteristics of Energy Sources and Sensing Systems 
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Normalized black body spectra representative of the sun (left) and earth (right), 
plotted on a logarithmic wavelength scale.  The ordinate is multiplied by 
wavelength so that the area under the curves is proportional to irradiance. 

Black body Spectra 
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Emission, Absorption 
 
Blackbody radiation Bλ represents the upper limit to the amount of radiation that a real 
substance may emit at a given temperature for a given wavelength. 
 
Emissivity ελ is defined as the fraction of emitted radiation Rλ to Blackbody radiation, 
 
  ελ = Rλ /Bλ .  
In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so 
 aλ = ελ .  
Thus, materials which are strong absorbers at a given wavelength are also strong emitters at 
that wavelength; similarly weak absorbers are weak emitters. 
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Transmittance  
 
Transmission through an absorbing medium for a given wavelength is governed by 
the number of intervening absorbing molecules (path length u) and their absorbing 
power (kλ) at that wavelength.  Beer’s law indicates that transmittance decays 
exponentially with increasing path length 
 
                           - kλ u (z) 
 τλ (z → ∞ ) =  e 
                    ∞ 
where the path length is given by  u (z)  =   ∫    ρ dz . 
                                z 
 
kλ u is a measure of the cumulative depletion that the beam of radiation has 
experienced as a result of its passage through the layer and is often called the optical 
depth σλ.  
Realizing that the hydrostatic equation implies  g ρ dz  =  - q dp 
 
where q is the mixing ratio and ρ is the density of the atmosphere, then 
 
                p           - kλ u (p) 
 u (p)  =   ∫    q g-1 dp             and           τλ (p → o ) =  e  . 
               o 
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τ + a + r = 1 

τ + a + r = 1 

Energy conservation 

=ελBλ(Ts) 

T 
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Emission, Absorption, Reflection, and Scattering 
 
 
If aλ, rλ, and τλ represent the fractional absorption, reflectance, and transmittance, 
respectively, then conservation of energy says 
 
 aλ + rλ + τλ = 1  . 
 
For a blackbody aλ = 1, it follows that rλ = 0 and τλ = 0 for blackbody radiation.  Also, for a 
perfect window τλ = 1, aλ = 0 and rλ = 0.  For any opaque surface τλ = 0, so radiation is either 
absorbed or reflected aλ + rλ = 1. 
 
At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), 
and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths). 
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Radiative Transfer Equation 
 
The radiance leaving the earth-atmosphere system sensed by a 
satellite borne radiometer is the sum of radiation emissions 
from the earth-surface and each atmospheric level that are 
transmitted to the top of the atmosphere.  Considering the 
earth's surface to be a blackbody emitter (emissivity equal to 
unity), the upwelling radiance intensity, Iλ, for a cloudless 
atmosphere is given by the expression 
 
 
 Iλ  = ελsfc Bλ( Tsfc) τλ(sfc - top)   +    Σ ελlayer Bλ( Tlayer) τλ(layer - top) 
                                                         layers 
 
 
where the first term is the surface contribution and the second 
term is the atmospheric contribution to the radiance to space.  
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Spectral Characteristics of  
Atmospheric Transmission and Sensing Systems 
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Relative Effects of Radiative Processes 
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There are 3 modes : 
 

- « nucleation  »: radius is 
between 0.002 and 0.05 µm.   
They result from combustion 
processes, photo-chemical 
reactions, etc. 

 
- « accumulation »: radius is 
between 0.05 µm and 0.5 µm.  
Coagulation processes. 

 
- « coarse »: larger than 1 µm.  
From mechanical processes like 
aeolian erosion.   
 

 « fine » particles (nucleation and 
accumulation) result from anthropogenic 

activities, coarse particles come from 
natural processes. 

 

Aerosol Size Distribution 

http://capita.wustl.edu/AerosolIntegration/specialtopics/Integration/Capter4Drafts/Figs/Fig1GenSizeDV000614.gif
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Scattering of early morning sun light from smoke 
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Measurements in the Solar Reflected Spectrum 
across the region covered by AVIRIS  
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AVIRIS Movie #1 
AVIRIS Image - Linden CA 20-Aug-1992 

224 Spectral Bands: 0.4 - 2.5 µm 
Pixel: 20m x 20m    Scene: 10km x 10km 

Movie from MIT/LL 
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AVIRIS Movie #2 
AVIRIS Image - Porto Nacional, Brazil 

20-Aug-1995 
224 Spectral Bands: 0.4 - 2.5 µm  Pixel: 20m x 20m    Scene: 10km x 10km 

Movie from MIT/LL 
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UV, Visible and Near-IR 

Far-Infrared (IR) 

UV, Visible and Near-IR  and IR and Far-IR 

Infrared (IR) 
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Relevant Material in Applications of Meteorological Satellites 
 
CHAPTER 2 - NATURE OF RADIATION                                    
2.1     Remote Sensing of Radiation    2-1 
2.2    Basic Units      2-1 
2.3   Definitions of Radiation                       2-2 
2.5 Related Derivations     2-5 
 
CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING       
3.1 Absorption and Emission     3-1 
3.2 Conservation of Energy     3-1 
3.3 Planetary Albedo     3-2 
3.4 Selective Absorption and Emission    3-2 
3.7 Summary of Interactions between Radiation and Matter  3-6 
3.8 Beer's Law and Schwarzchild's Equation   3-7 
3.9    Atmospheric Scattering     3-9 
3.10     The Solar Spectrum     3-11 
3.11 Composition of the Earth's Atmosphere   3-11 
3.12   Atmospheric Absorption and Emission of Solar Radiation  3-11 
3.13  Atmospheric Absorption and Emission of Thermal Radiation  3-12 
3.14   Atmospheric Absorption Bands in the IR Spectrum   3-13 
3.15   Atmospheric Absorption Bands in the Microwave Spectrum  3-14 
3.16    Remote Sensing Regions     3-14 
 
CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE)                
5.1     Derivation of RTE     5-1 
5.10 Microwave Form of RTE     5-28 

→ 
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Radiative Transfer Equation 
 
The radiance leaving the earth-atmosphere system sensed by a 
satellite borne radiometer is the sum of radiation emissions 
from the earth-surface and each atmospheric level that are 
transmitted to the top of the atmosphere.  Considering the 
earth's surface to be a blackbody emitter (emissivity equal to 
unity), the upwelling radiance intensity, Iλ, for a cloudless 
atmosphere is given by the expression 
 
 
 Iλ  = ελsfc Bλ( Tsfc) τλ(sfc - top)   +    Σ ελlayer Bλ( Tlayer) τλ(layer - top) 
                                                         layers 
 
 
where the first term is the surface contribution and the second 
term is the atmospheric contribution to the radiance to space.  
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Re-emission of Infrared Radiation 
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Radiative Transfer through the 
Atmosphere 
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Radiative Transfer Equation 
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Rsfc R1 R2 
 
                                                              top of the atmosphere 
 

   τ2 = transmittance of upper layer of atm 
                                                               
 
   τ1= transmittance of lower layer of atm 
                                                                 
     bb earth surface. 
 

Robs =  
Rsfc τ1 τ2 + R1 (1-τ1) τ2 + R2 (1- τ2) 
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In standard notation, 
 
 Iλ  =  ελsfc Bλ(T(ps)) τλ(ps) + Σ ελ(∆p) Bλ(T(p)) τλ(p) 
                                              p 
 
The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal 
to the absorptance (one minus the transmittance of the layer).  Consequently, 
 
 ελ(∆p) τλ(p)  =  [1 - τλ(∆p)] τλ(p) 
 
Since transmittance is an exponential function of depth of absorbing constituent, 
 
                                    p+∆p                                     p 
 τλ(∆p) τλ(p)  =  exp [ - ∫     kλ q g-1 dp]   *   exp [ -  ∫  kλ q g-1 dp]  =  τλ(p + ∆p) 
                                     p                                           o 
Therefore 
 ελ(∆p) τλ(p)  = τλ(p) - τλ(p + ∆p)  =  - ∆τλ(p) . 
 
So we can write 
 Iλ  =  ελsfc Bλ(T(ps)) τλ(ps) - Σ  Bλ(T(p)) ∆τλ(p) . 
                                                             p 
which when written in integral form reads 
                                            ps 
 Iλ  = ελsfc Bλ(T(ps)) τλ(ps) - ∫    Bλ(T(p)) [ dτλ(p) / dp ]  dp . 
                                            o 
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When reflection from the earth surface is also considered, the Radiative Transfer 
Equation for infrared radiation can be written 
 
              o              
 Iλ  =  ελsfc Bλ(Ts) τλ(ps) + ∫ Bλ(T(p)) Fλ(p) [dτλ(p)/ dp] dp 
                                         ps             
where 
 
 Fλ(p)  =  { 1 + (1 - ελ) [τλ(ps) / τλ(p)]2 } 
 
 
The first term is the spectral radiance emitted by the surface and attenuated by 
the atmosphere, often called the boundary term and the second term is the 
spectral radiance emitted to space by the atmosphere directly or by reflection 
from the earth surface. 
 
The atmospheric contribution is the weighted sum of the Planck radiance 
contribution from each layer, where the weighting function is [ dτλ(p) / dp ].  
This weighting function is an indication of where in the atmosphere the majority 
of the radiation for a given spectral band comes from. 
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Transmittance for Window 
Channels 

z 

τ 1 

 
τ close to 1 
a close to 0  

z1 
z2 

zN 

τ + a + r = 1 

 The molecular species in the  
atmosphere are not very active: 
•most of the photons emitted by the 
surface make it to the Satellite  
• if a is close to 0 in the atmosphere 
then ε is close to 0, not much 
contribution from the atmospheric 
layers 
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Trasmittance for Absorption 
Channels 

z 

τ 1 
z1 
z2 

zN Absorption Channel: 
τ close to 0 

 a close to 1  

 One or more molecular species in the  
atmosphere is/are very active: 
•most of the photons emitted by the 
surface will not make it to the 
Satellite (they will be absorbed)  
• if a is close to 1 in the atmosphere 
then ε is close to 1, most of the 
observed energy comes from  one or 
more of the uppermost atmospheric 
layers 
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Earth emitted spectra overlaid on Planck function envelopes 

CO2 

H20 

O3 

CO2 
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AIRS – Longwave Movie 
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Longwave CO2 
14.7 1 680 CO2, strat temp 
14.4 2 696 CO2, strat temp 
14.1 3 711 CO2, upper trop temp 
13.9 4 733 CO2, mid trop temp 
13.4 5 748 CO2, lower trop temp 
12.7 6 790 H2O, lower trop moisture 
12.0 7 832 H2O, dirty window 
 

Midwave H2O & O3 
11.0 8 907 window 
 9.7 9 1030 O3, strat ozone 
 7.4 10 1345 H2O, lower mid trop moisture 
 7.0 11 1425 H2O, mid trop moisture 
 6.5 12 1535 H2O, upper trop moisture 
 

GOES Sounder Weighting Functions 
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Weighting Functions 

τ 1 
z1 
z2 

zN 

dτ/dz 
z1 
z2 

zN 
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CO2 channels see to different levels in the atmosphere 

14.2 um             13.9 um             13.6 um           13.3 um               
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Low Gain Channels 

Band 14 low 
0.68 µm 

Vegetated areas 
Are visible 

Saturation over 
Barren Soil 

Visible details 
over water 
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High Gain Channels 

Band 14 hi 
0.68 µm 

Saturation over 
Vegetated areas 
little barely visible 

Visible details 
over water 

Saturation over 
Barren Soil 
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H2O H2O O3 CO2 CO2 CO2 CO2 

 
MODIS absorption bands 
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Conclusion 

 
• Radiative Transfer Equation (IR): models the 

propagation of terrestrial emitted energy 
through the atmosphere 



51 What time of day is this image from? 
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