Radiative Transfer in the Atmosphere

Lectures in Monteponi September 2008

Paul Menzel UW/CIMSS/AOS

Outline

Radiation Definitions

Planck Function

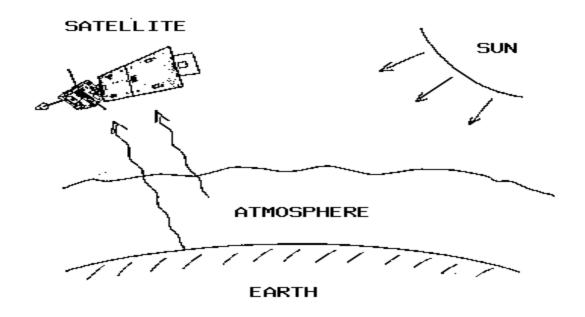
Emission, Absorption, Scattering

Radiative Transfer Equation

Satellite Derived Met Parameters

Microwave Considerations

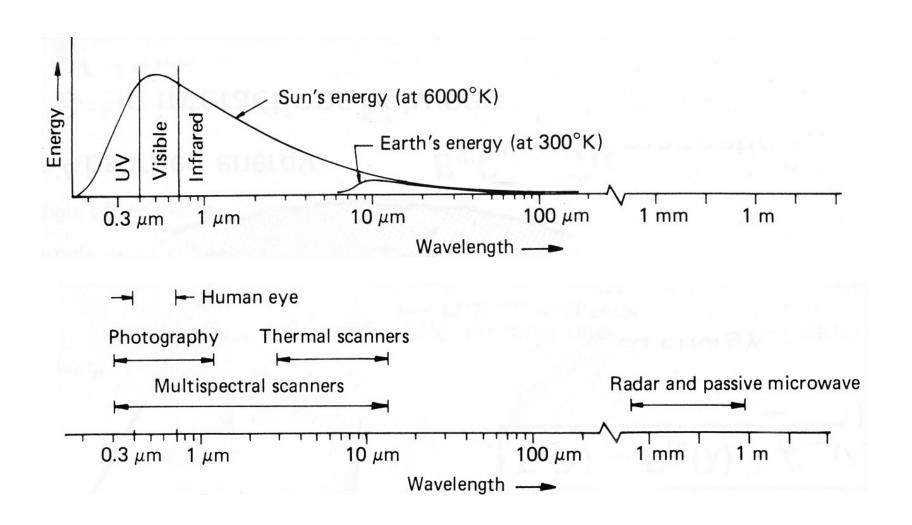
Satellite remote sensing of the Earth-atmosphere



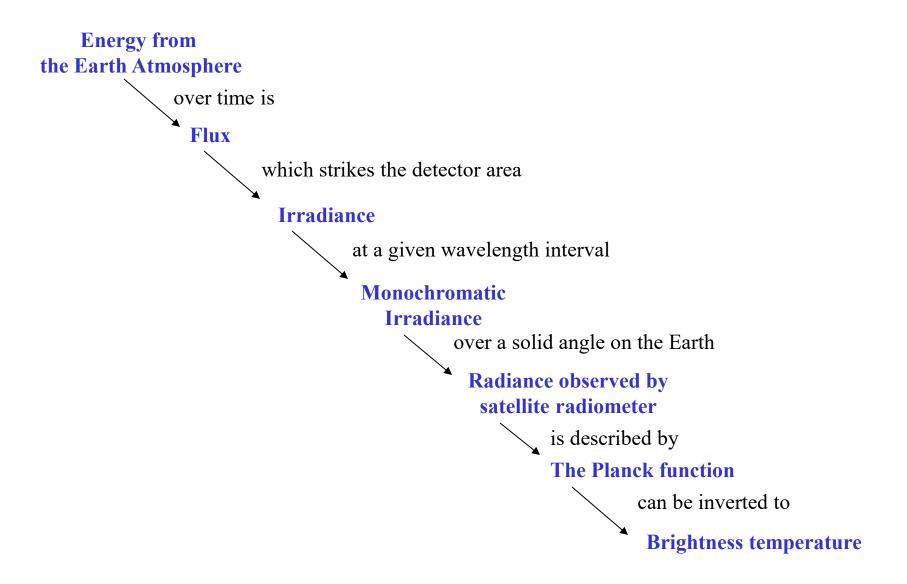
Observations depend on

telescope characteristics (resolving power, diffraction) detector characteristics (signal to noise) communications bandwidth (bit depth) spectral intervals (window, absorption band) time of day (daylight visible) atmospheric state (T, Q, clouds) earth surface (Ts, vegetation cover)

Spectral Characteristics of Energy Sources and Sensing Systems



Terminology of radiant energy



Definitions of Radiation

QUANTITY	SYMBOL	UNITS
Energy	dQ	Joules
Flux	dQ/dt	Joules/sec = Watts
Irradiance	dQ/dt/dA	Watts/meter ²
Monochromatic Irradiance	dQ/dt/dA/dλ	W/m²/micron
	or	
	dQ/dt/dA/dν	$W/m^2/cm^{-1}$
Radiance	$dQ/dt/dA/d\lambda/d\Omega$	W/m²/micron/ster
	or	
	$dQ/dt/dA/d\nu/d\Omega$	W/m ² /cm ⁻¹ /ster

Using wavelengths

$$c_2/\lambda T$$

Planck's Law

$$B(\lambda,T) = c_1/\lambda^5/[e -1] \quad (mW/m^2/ster/cm)$$

where

 λ = wavelengths in cm

T = temperature of emitting surface (deg K)

 $c_1 = 1.191044 \times 10-5 \text{ (mW/m}^2/\text{ster/cm}^{-4})$

 $c_2 = 1.438769 \text{ (cm deg K)}$

Wien's Law

 $dB(\lambda_{max},T) / d\lambda = 0$ where $\lambda(max) = .2897/T$

indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers)

with temperature increase. Note $B(\lambda_{max}, T) \sim T^5$.

Stefan-Boltzmann Law
$$E = \pi \int B(\lambda,T) d\lambda = \sigma T^4$$
, where $\sigma = 5.67 \times 10-8 \text{ W/m}2/\text{deg}4$.

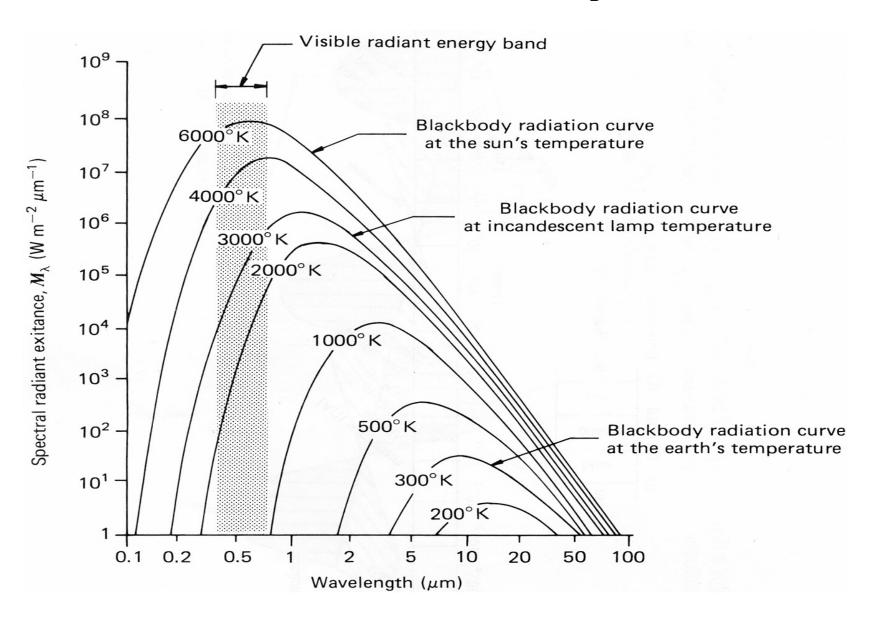
states that irradiance of a black body (area under Planck curve) is proportional to T⁴.

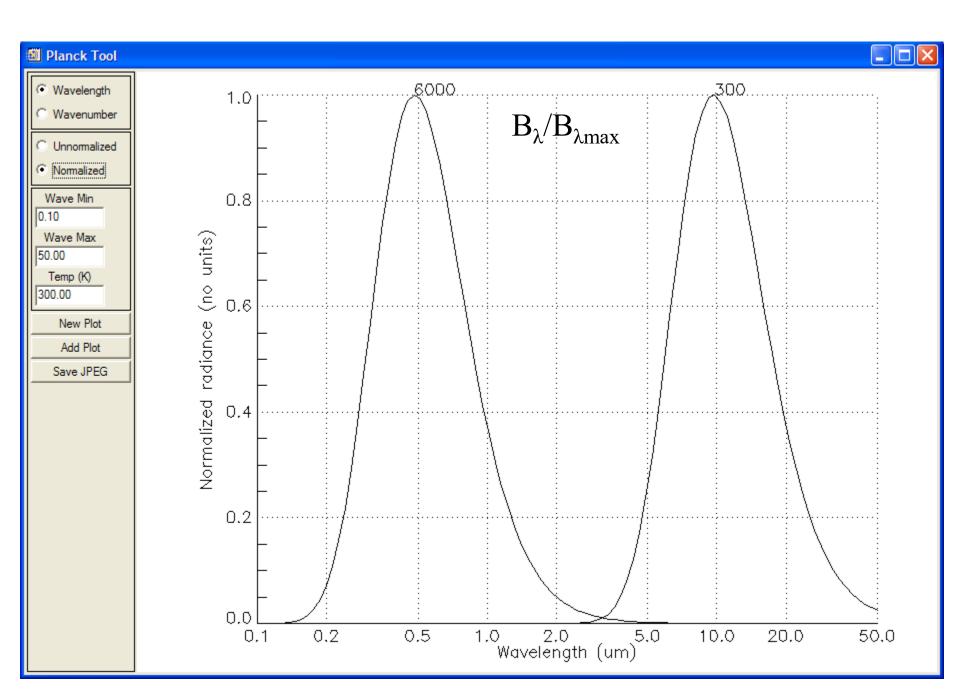
0

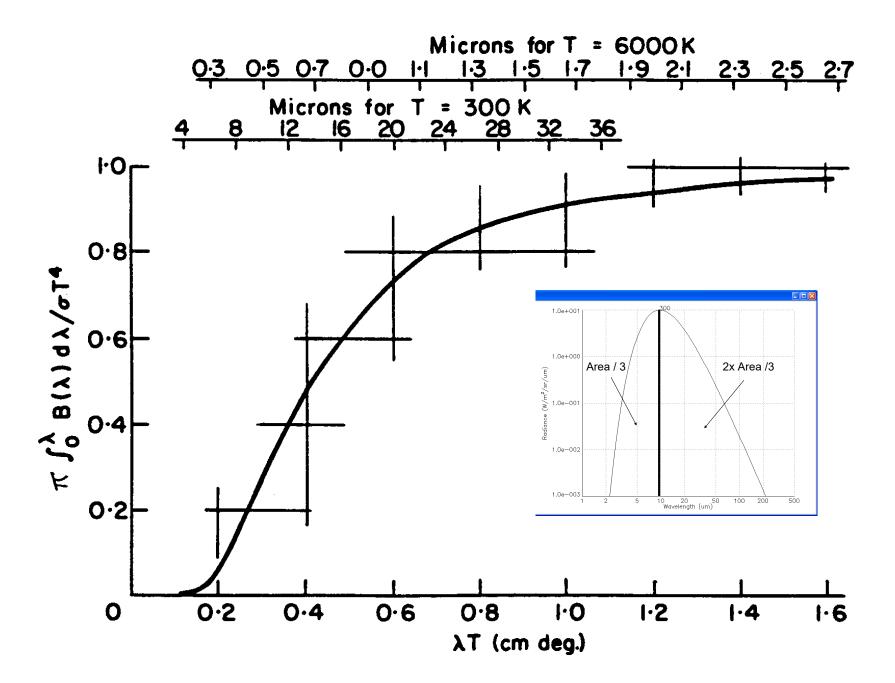
Brightness Temperature

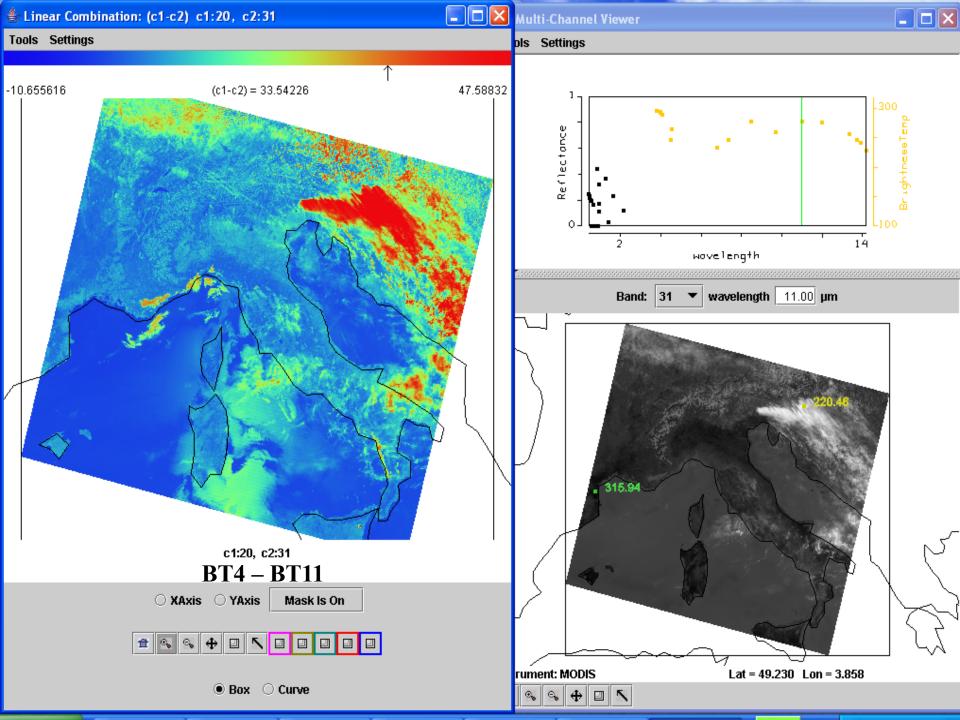
$$T = c_2 / [\lambda \ln(\frac{c_1}{m} + 1)]$$
 is determined by inverting Planck function $\lambda^5 B_{\lambda}$

Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures









Observed BT at 4 micron

Window Channel:

•little atmospheric absorption

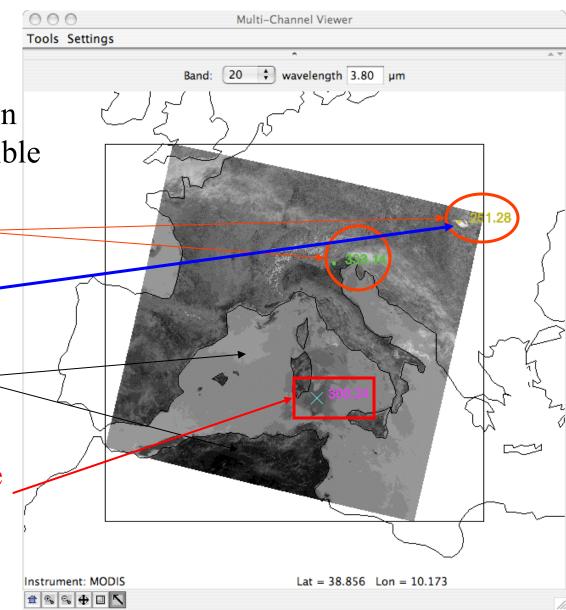
•surface features clearly visible

Range BT[250, 335] Range R[0.2, 1.7]

Clouds are cold

Values over land Larger than over water

Reflected Solar everywhere Stronger over Sunglint



Observed BT at 11 micron

Window Channel:

•little atmospheric absorption

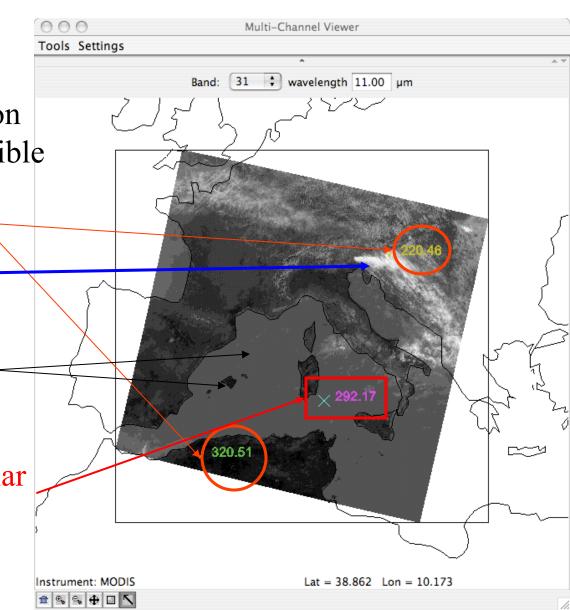
•surface features clearly visible

Range BT [220, 320] Range R [2.1, 12.4]

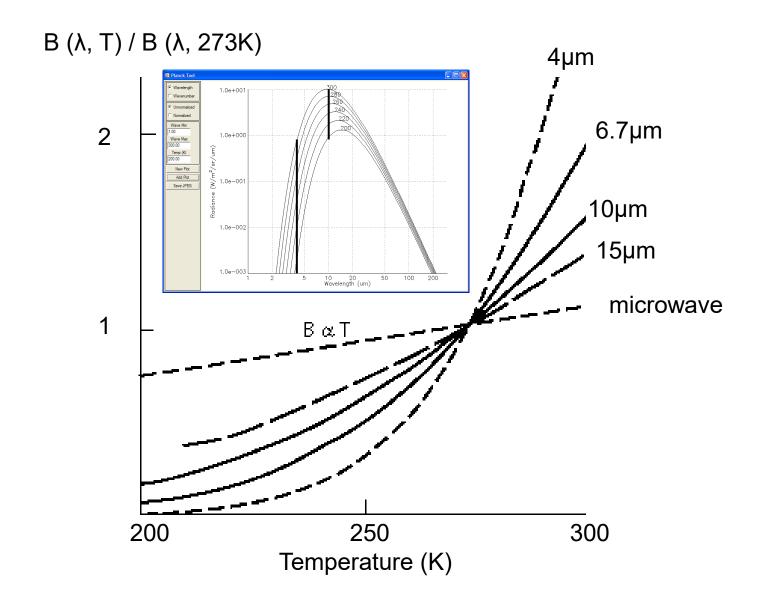
Clouds are cold -

Values over land Larger than over water

Undetectable Reflected Solar Even over Sunglint



Temperature Sensitivity of $B(\lambda,T)$ for typical earth temperatures





Cloud edges and broken clouds appear different in 11 and 4 um images.

T(11)**4=(1-N)*Tclr**4+N*Tcld**4~(1-N)*300**4+N*200**4
T(4)**12=(1-N)*Tclr**12+N*Tcld**12~(1-N)*300**12+N*200**12

Cold part of pixel has more influence for B(11) than B(4)

Table 6.1 Longwave and Shortwave Window Planck Radiances (mW/m**2/ster/cm-1) and Brightness Temperatures (degrees K) as a function of Fractional Cloud Amount (for cloud of 220 K and surface of 300 K) using B(T) = $(1-N)*B(T_{sfc}) + N*B(T_{cld})$.

Cloud Fraction N	Longwave Rad	Window Temp	Shortwav Rad	e Window Temp	T _s -T ₁
1.0	23.5	220	.005	220	0
.8	42.0	244	.114	267	23
.6	60.5	261	.223	280	19
.4	79.0	276	.332	289	13
.2	97.5	289	.441	295	6
.0	116.0	300	.550	300	0

SW and LW BTs for different cloud amounts when Tcld=220 and Tsfc=300 300 BT4 280 **BT11** 260 240 220 0.8 0.6 0.4 0.2 1.0 0.0N

Using wavenumbers

$$c_2 v/T$$

$$B(v,T) = c_1 v^3 / [e -1] (mW/m^2/ster/cm^{-1})$$

where

v = # wavelengths in one centimeter (cm-1)

T = temperature of emitting surface (deg K)

 $c_1 = 1.191044 \times 10-5 \text{ (mW/m}^2/\text{ster/cm}^{-4})$

 $c_2 = 1.438769$ (cm deg K)

Wien's Law

 $dB(v_{max},T) / dv = 0$ where $v_{max} = 1.95T$

indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase.

Stefan-Boltzmann Law
$$E = \pi \int_{0}^{\infty} B(v,T) dv = \sigma T^4$$
, where $\sigma = 5.67 \times 10-8 \text{ W/m} 2/\text{deg} 4$.

states that irradiance of a black body (area under Planck curve) is proportional to T⁴.

Brightness Temperature

$$c_1 v^3$$

$$T = c_2 v / [ln(\underline{\hspace{0.2cm}} + 1)] \text{ is determined by inverting Planck function } B_v$$

Using wavenumbers

$$c_2 v/T$$

$$B(v,T) = c_1 v^3 / [e -1]$$

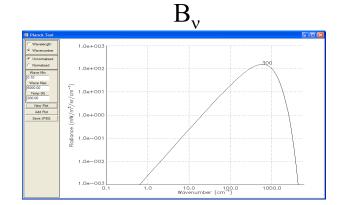
$$(mW/m^2/ster/cm^{-1})$$

$$v(\text{max in cm-1}) = 1.95T$$

$$B(v_{max},T) \sim T^{**}3.$$

$$E = \pi \int_{0}^{\infty} B(v,T) dv = \sigma T^{4},$$

$$T = c_2 v / [ln(\frac{c_1 v^3}{D} + 1)]$$



Using wavelengths

$$c_2/\lambda T$$

$$B(\lambda,T) = c_1/\{ \lambda^5 [e -1] \}$$

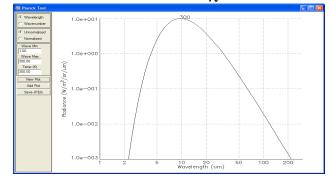
$$(mW/m^2/ster/\mu m)$$

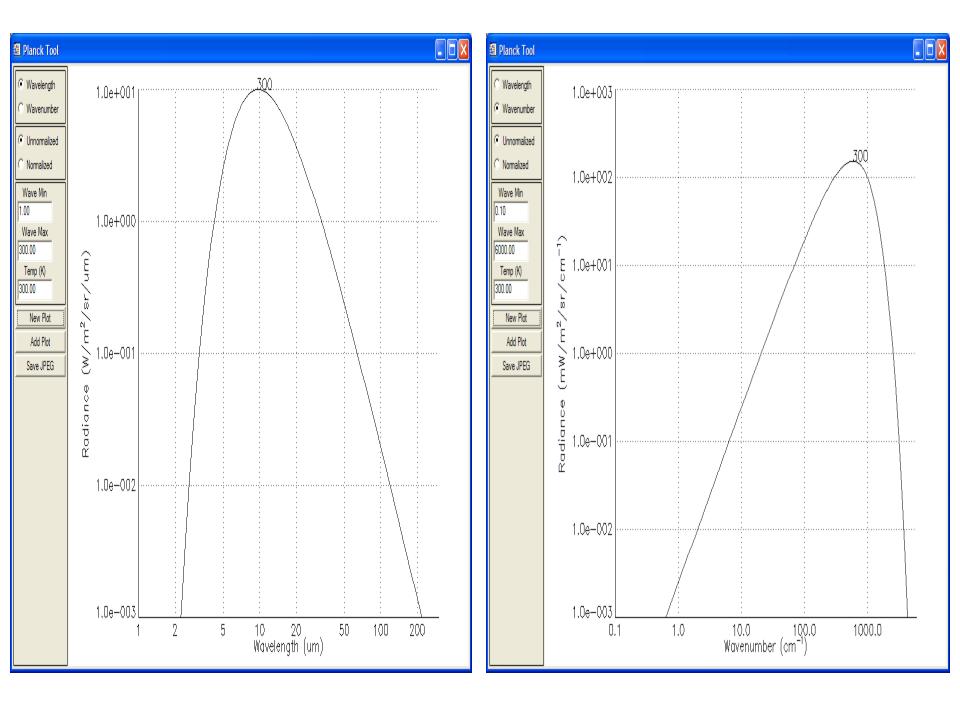
$$\lambda$$
(max in cm)T = 0.2897

$$B(\lambda_{max},T) \sim T^{**}5.$$

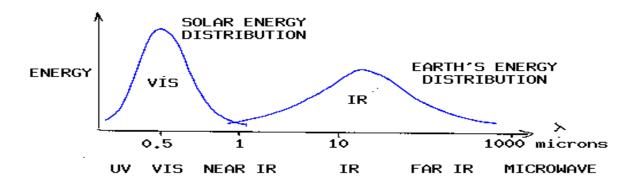
$$E = \pi \int_{0}^{\infty} B(\lambda, T) d\lambda = \sigma T^{4},$$

$$T = c_2/[\lambda \ln(\frac{c_1}{\lambda^5 B_{\lambda}} + 1)]$$





Solar (visible) and Earth emitted (infrared) energy



Incoming solar radiation (mostly visible) drives the earth-atmosphere (which emits infrared).

Over the annual cycle, the incoming solar energy that makes it to the earth surface (about 50 %) is balanced by the outgoing thermal infrared energy emitted through the atmosphere.

The atmosphere transmits, absorbs (by H2O, O2, O3, dust) reflects (by clouds), and scatters (by aerosols) incoming visible; the earth surface absorbs and reflects the transmitted visible. Atmospheric H2O, CO2, and O3 selectively transmit or absorb the outgoing infrared radiation. The outgoing microwave is primarily affected by H2O and O2.

Relevant Material in Applications of Meteorological Satellites

	CHAPTER 2 - NATURE OF RADIATION		
	2.1	Remote Sensing of Radiation	2-1
	2.2	Basic Units	2-1
	2.3	Definitions of Radiation	2-2
	2.5	Related Derivations	2-5
\rightarrow	СНАРТЕ	R 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING	
	3.1	Absorption and Emission	3-1
	3.2	Conservation of Energy	3-1
	3.3	Planetary Albedo	3-2
	3.4	Selective Absorption and Emission	3-2
	3.7	Summary of Interactions between Radiation and Matter	3-6
	3.8	Beer's Law and Schwarzchild's Equation	3-7
	3.9	Atmospheric Scattering	3-9
	3.10	The Solar Spectrum	3-11
	3.11	Composition of the Earth's Atmosphere	3-11
	3.12	Atmospheric Absorption and Emission of Solar Radiation	3-11
	3.13	Atmospheric Absorption and Emission of Thermal Radiation	3-12
	3.14	Atmospheric Absorption Bands in the IR Spectrum	3-13
	3.15	Atmospheric Absorption Bands in the Microwave Spectrum	3-14
	3.16	Remote Sensing Regions	3-14
	СНАРТЕГ	R 5 - THE RADIATIVE TRANSFER EQUATION (RTE)	
	5.1	Derivation of RTE	5-1
	5.10	Microwave Form of RTE	5-28

Emission, Absorption, Reflection, and Scattering

Blackbody radiation B_{λ} represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength.

Emissivity ε_{λ} is defined as the fraction of emitted radiation R_{λ} to Blackbody radiation,

$$\varepsilon_{\lambda} = R_{\lambda} / B_{\lambda}$$
.

In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so $a_{\lambda} = \epsilon_{\lambda}$.

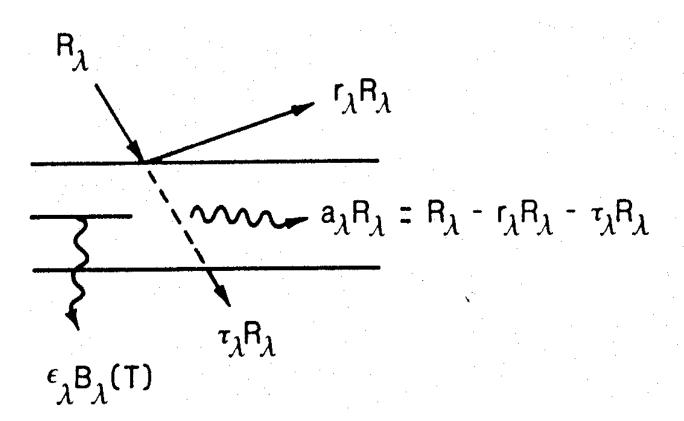
Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters.

If a_{λ} , r_{λ} , and τ_{λ} represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says

$$a_{\lambda} + r_{\lambda} + \tau_{\lambda} = 1$$
.

For a blackbody $a_{\lambda}=1$, it follows that $r_{\lambda}=0$ and $\tau_{\lambda}=0$ for blackbody radiation. Also, for a perfect window $\tau_{\lambda}=1$, $a_{\lambda}=0$ and $r_{\lambda}=0$. For any opaque surface $\tau_{\lambda}=0$, so radiation is either absorbed or reflected $a_{\lambda}+r_{\lambda}=1$.

At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).



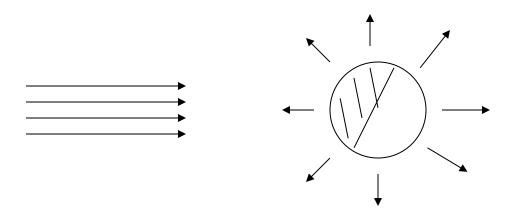
'ENERGY CONSERVATION'

Planetary Albedo

Planetary albedo is defined as the fraction of the total incident solar irradiance, S, that is reflected back into space. Radiation balance then requires that the absorbed solar irradiance is given by

$$E = (1 - A) S/4.$$

The factor of one-fourth arises because the cross sectional area of the earth disc to solar radiation, πr^2 , is one-fourth the earth radiating surface, $4\pi r^2$. Thus recalling that $S = 1380 \text{ Wm}^{-2}$, if the earth albedo is 30 percent, then $E = 241 \text{ Wm}^{-2}$.



Selective Absorption and Transmission

Assume that the earth behaves like a blackbody and that the atmosphere has an absorptivity a_S for incoming solar radiation and a_L for outgoing longwave radiation. Let Y_a be the irradiance emitted by the atmosphere (both upward and downward); Y_s the irradiance emitted from the earth's surface; and E the solar irradiance absorbed by the earth-atmosphere system. Then, radiative equilibrium requires

E -
$$(1-a_L) Y_s - Y_a = 0$$
, at the top of the atmosphere, $(1-a_S) E - Y_s + Y_a = 0$, at the surface.

Solving yields

$$Y_s = \frac{(2-a_S)}{(2-a_L)}$$
 E, and

$$Y_a = \frac{(2-a_L) - (1-a_L)(2-a_S)}{(2-a_L)} E.$$

Since $a_L > a_S$, the irradiance and hence the radiative equilibrium temperature at the earth surface is increased by the presence of the atmosphere. With $a_L = .8$ and $a_S = .1$ and E = 241 Wm⁻², Stefans Law yields a blackbody temperature at the surface of 286 K, in contrast to the 255 K it would be if the atmospheric absorptance was independent of wavelength ($a_S = a_L$). The atmospheric gray body temperature in this example turns out to be 245 K.

Incoming Outgoing IR solar

$$\downarrow$$
E \uparrow (1-a₁) $Y_s \uparrow Y_a$

top of the atmosphere

$$\downarrow (1-a_s) E \uparrow Y_s \downarrow Y_a$$

earth surface.

$$Y_s = \frac{(2-a_s)}{(2-a_I)} E = \sigma T_s^4$$

Expanding on the previous example, let the atmosphere be represented by two layers and let us compute the vertical profile of radiative equilibrium temperature. For simplicity in our two layer atmosphere, let $a_S = 0$ and $a_L = a = .5$, u indicate upper layer, l indicate lower layer, and s denote the earth surface. Schematically we have:

Radiative equilibrium at each surface requires

$$\begin{split} E &= .25 \, Y_s \, + .5 \, Y_l + \, Y_u \, , \\ E &= .5 \, Y_s \, + \, Y_l \, - \, Y_u \, , \\ E &= \, Y_s \, - \, Y_l \, - .5 \, Y_u \, . \end{split}$$

Solving yields $Y_s = 1.6 E$, $Y_1 = .5 E$ and $Y_u = .33 E$. The radiative equilibrium temperatures (blackbody at the surface and gray body in the atmosphere) are readily computed.

$$T_s = [1.6E / \sigma]^{1/4} = 287 \text{ K},$$
 $T_1 = [0.5E / 0.5\sigma]^{1/4} = 255 \text{ K},$
 $T_n = [0.33E / 0.5\sigma]^{1/4} = 231 \text{ K}.$

Thus, a crude temperature profile emerges for this simple two-layer model of the atmosphere.

Transmittance

Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k_{λ}) at that wavelength. Beer's law indicates that transmittance decays exponentially with increasing path length

$$\tau_{\lambda} (z \rightarrow \infty) = e^{-k_{\lambda} u(z)}$$

where the path length is given by $u(z) = \int_{z}^{\infty} \rho dz$.

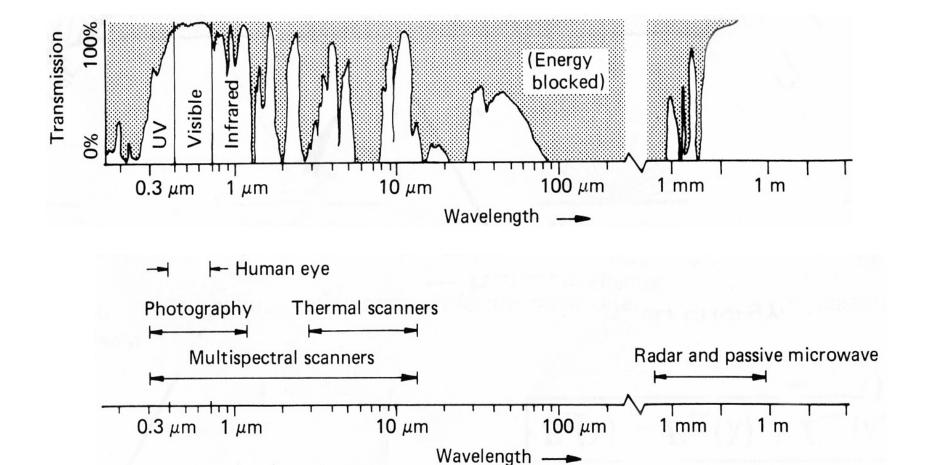
 k_{λ} u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth σ_{λ} .

Realizing that the hydrostatic equation implies $g \rho dz = -q dp$

where q is the mixing ratio and ρ is the density of the atmosphere, then

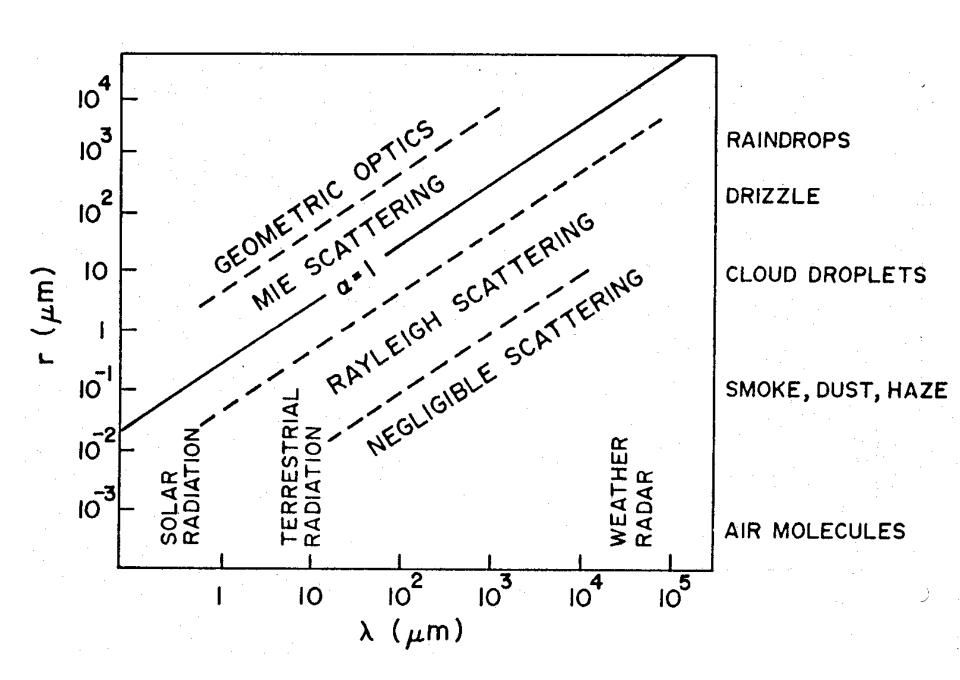
$$u(p) = \int_{0}^{p} q g^{-1} dp \qquad \text{and} \qquad \tau_{\lambda}(p \to o) = e \qquad .$$

Spectral Characteristics of Atmospheric Transmission and Sensing Systems



Relative Effects of Radiative Processes

Sun - Earth - Atmosphere Energy System						
		Colon B	a dia kiana	Tamaabiis	l Dadie Kee	
		Solar Radiation		Terrestrial Radiation		
		Absorption /Emission	Scattering	Absorption / Emission	Scattering	
	Walter	✓ Small	🗸 Large	✓ Moderate	✓Negligible	
Clouds	lce	√Yariable	√Moderate	🗸 Small	✓ Negligible	
Molecules in the Atmosphere		✓ Small	√Moderate	✓ Variable	✓Negligible	
Aerosols in the Atmosphere		✓ Small	√Moderate	✓ Yariable	✓Negligible	
	Land	√ Large	√Moderate	Large	✓Negligible	
Earth's Surface	Walter	✓ Large	🗸 Small	🗸 Large	✓Negligible	
EXIMIA SWIINAS	3now/lce	√Yariable	🗸 Large 💎	🗸 Yariable 👚	✓ Negligible	
Earth						

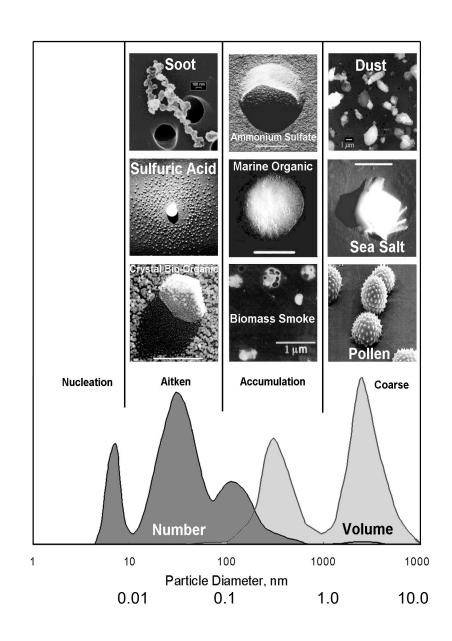


Aerosol Size Distribution

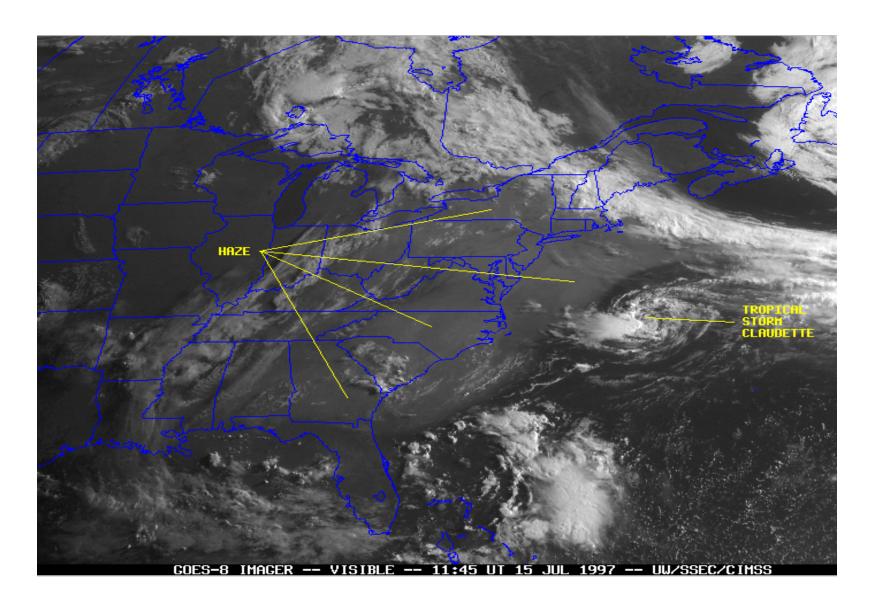
There are 3 modes:

- « nucleation »: radius is between 0.002 and 0.05 μm. They result from combustion processes, photo-chemical reactions, etc.
- « accumulation »: radius is between 0.05 μm and 0.5 μm. Coagulation processes.
- « coarse »: larger than 1 μm. From mechanical processes like aeolian erosion.

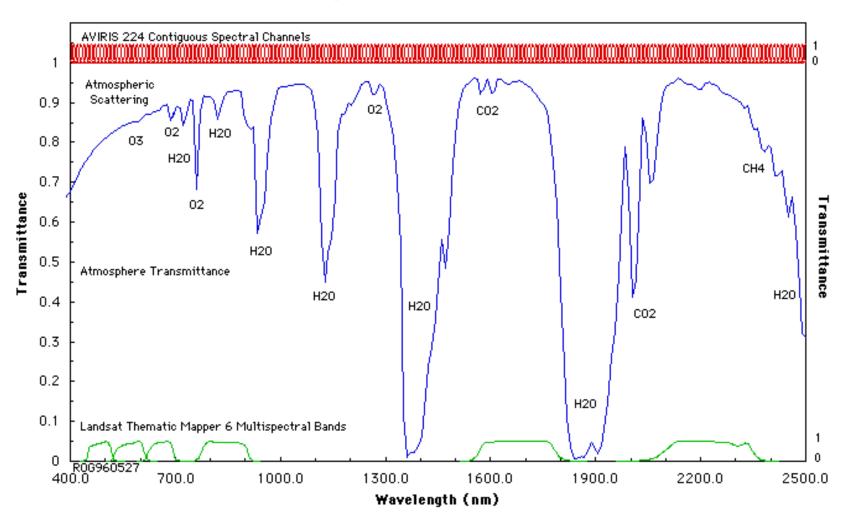
« fine » particles (nucleation and accumulation) result from anthropogenic activities, coarse particles come from natural processes.



Scattering of early morning sun light from haze



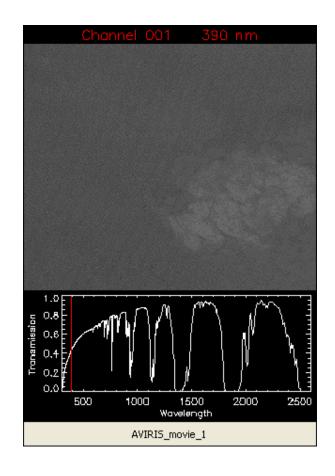
Measurements in the Solar Reflected Spectrum across the region covered by AVIRIS



AVIRIS Movie #1

AVIRIS Image - Linden CA 20-Aug-1992 224 Spectral Bands: 0.4 - 2.5 μm

Pixel: 20m x 20m Scene: 10km x 10km

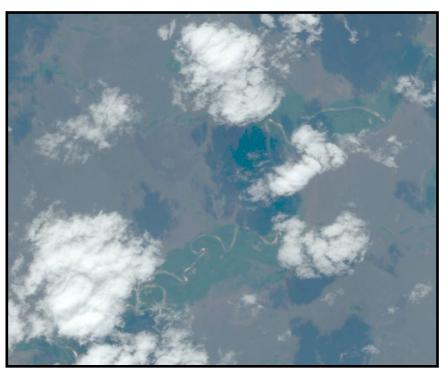


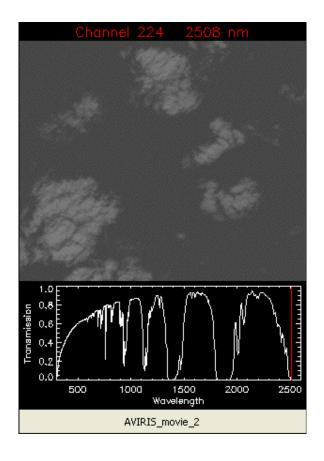
AVIRIS Movie #2

AVIRIS Image - Porto Nacional, Brazil 20-Aug-1995

224 Spectral Bands: 0.4 - 2.5 μm

Pixel: 20m x 20m Scene: 10km x 10km





Relevant Material in Applications of Meteorological Satellites

CHAPT	ER 2 - NATURE OF RADIATION	
2.1	Remote Sensing of Radiation	2-1
2.2	Basic Units	2-1
2.3	Definitions of Radiation	2-2
2.5	Related Derivations	2-5
СНАРТ	ER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING	
3.1	Absorption and Emission	3-1
3.2	Conservation of Energy	3-1
3.3	Planetary Albedo	3-2
3.4	Selective Absorption and Emission	3-2
3.7	Summary of Interactions between Radiation and Matter	3-6
3.8	Beer's Law and Schwarzchild's Equation	3-7
3.9	Atmospheric Scattering	3-9
3.10	The Solar Spectrum	3-11
3.11	Composition of the Earth's Atmosphere	3-11
3.12	Atmospheric Absorption and Emission of Solar Radiation	3-11
3.13	Atmospheric Absorption and Emission of Thermal Radiation	3-12
3.14	Atmospheric Absorption Bands in the IR Spectrum	3-13
3.15	Atmospheric Absorption Bands in the Microwave Spectrum	3-14
3.16	Remote Sensing Regions	3-14
CHAPT	ER 5 - THE RADIATIVE TRANSFER EQUATION (RTE)	
5.1	Derivation of RTE	5-1
5 10	Microwave Form of RTF	5-28

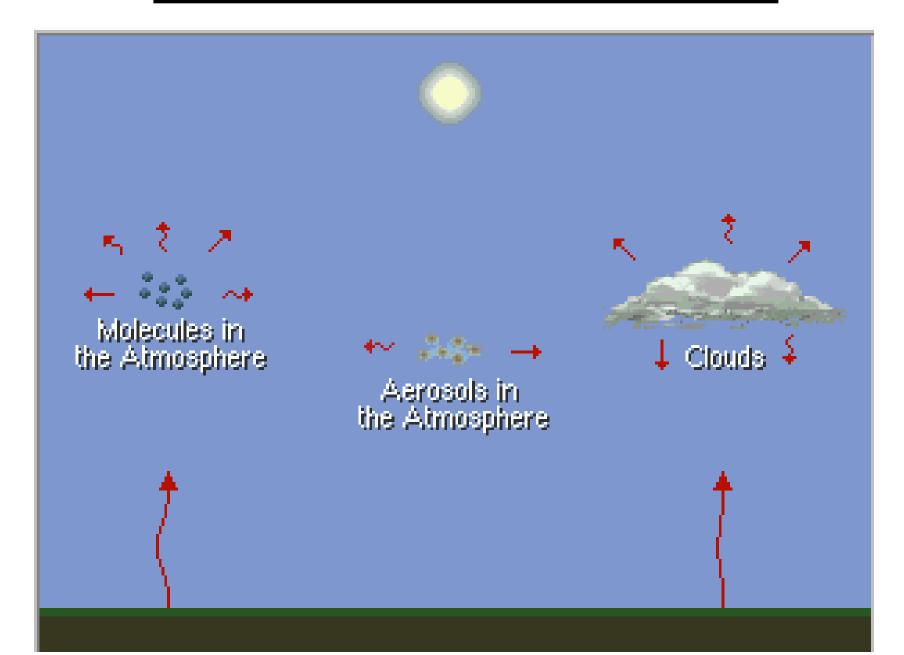
Radiative Transfer Equation

The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I_{λ} , for a cloudless atmosphere is given by the expression

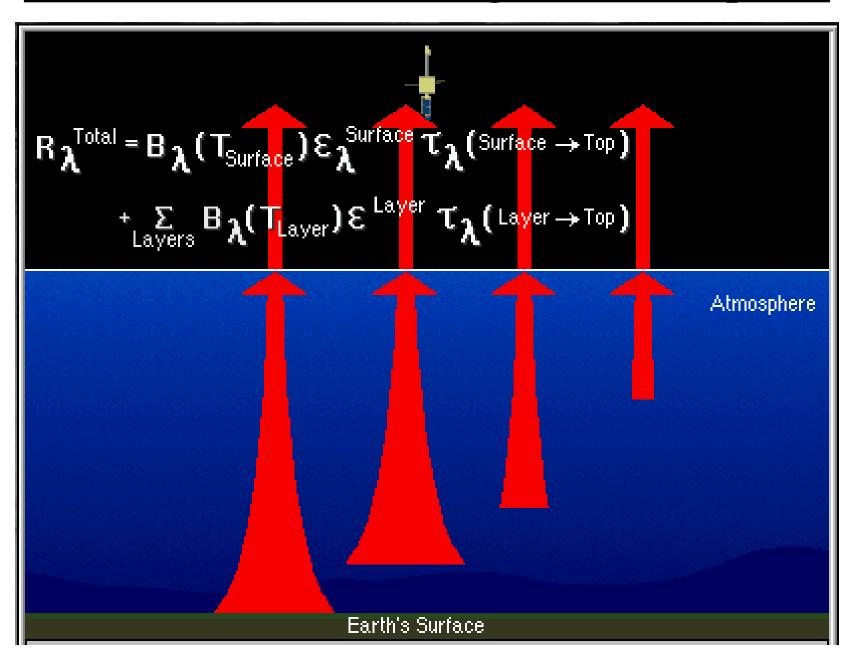
$$\begin{array}{ll} I_{\lambda} = \epsilon_{\lambda}{}^{sfc} \ B_{\lambda}(\ T_{sfc}) \ \tau_{\lambda}(sfc \ \hbox{-top}) \ + \ \Sigma \ \epsilon_{\lambda}{}^{layer} \ B_{\lambda}(\ T_{layer}) \ \tau_{\lambda}(layer \ \hbox{-top}) \\ layers \end{array}$$

where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

Re-emission of Infrared Radiation



Radiative Transfer through the Atmosphere



Rsfc R1 R2

top of the atmosphere $\tau 2 = \text{transmittance of upper layer of atm}$ $\tau 1 = \text{transmittance of lower layer of atm}$ bb earth surface.

Robs = Rsfc
$$\tau 1 \ \tau 2 + R1 \ (1-\tau 1) \ \tau 2 + R2 \ (1-\tau 2)$$

In standard notation,

$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T(p_s)) \tau_{\lambda}(p_s) + \sum \epsilon_{\lambda}(\Delta p) B_{\lambda}(T(p)) \tau_{\lambda}(p)$$

$$p$$

The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer). Consequently,

$$\varepsilon_{\lambda}(\Delta p) \, \tau_{\lambda}(p) = [1 - \tau_{\lambda}(\Delta p)] \, \tau_{\lambda}(p)$$

Since transmittance is an exponential function of depth of absorbing constituent,

$$\tau_{\lambda}(\Delta p) \, \tau_{\lambda}(p) \, = \, \exp \left[\begin{array}{ccc} p + \Delta p & p \\ -\int & k_{\lambda} \, q \, g^{\text{-1}} \, dp \right] & * & \exp \left[\begin{array}{ccc} p & k_{\lambda} \, q \, g^{\text{-1}} \, dp \right] = \\ p & o \end{array} \right]$$

Therefore

$$\varepsilon_{\lambda}(\Delta p) \, \tau_{\lambda}(p) = \tau_{\lambda}(p) - \tau_{\lambda}(p + \Delta p) = - \Delta \tau_{\lambda}(p)$$
.

So we can write

$$\begin{split} I_{\lambda} \; = \; \epsilon_{\lambda}{}^{sfc} \; B_{\lambda}(T(p_s)) \; \tau_{\lambda}(p_s) \; - \; \Sigma \; \; B_{\lambda}(T(p)) \; \Delta \tau_{\lambda}(p) \; . \\ p \end{split}$$

which when written in integral form reads

$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T(p_s)) \tau_{\lambda}(p_s) - \int_{0}^{p_s} B_{\lambda}(T(p)) [d\tau_{\lambda}(p) / dp] dp .$$

When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written

$$I_{\lambda} = \varepsilon_{\lambda}^{\text{sfc}} B_{\lambda}(T_{s}) \tau_{\lambda}(p_{s}) + \int_{0}^{0} B_{\lambda}(T(p)) F_{\lambda}(p) [d\tau_{\lambda}(p)/dp] dp$$

$$p_{s}$$

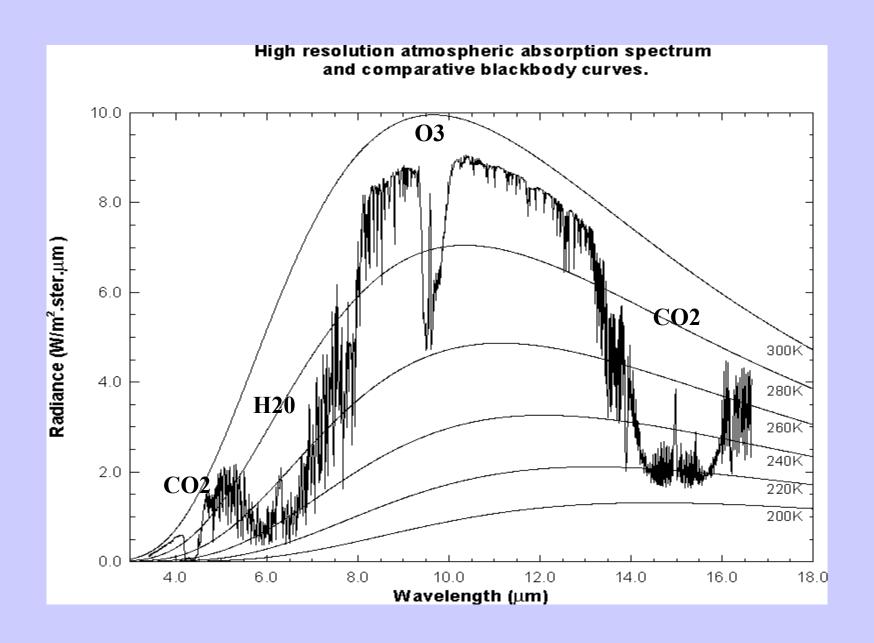
where

$$F_{\lambda}(p) = \{ 1 + (1 - \varepsilon_{\lambda}) \left[\tau_{\lambda}(p_s) / \tau_{\lambda}(p) \right]^2 \}$$

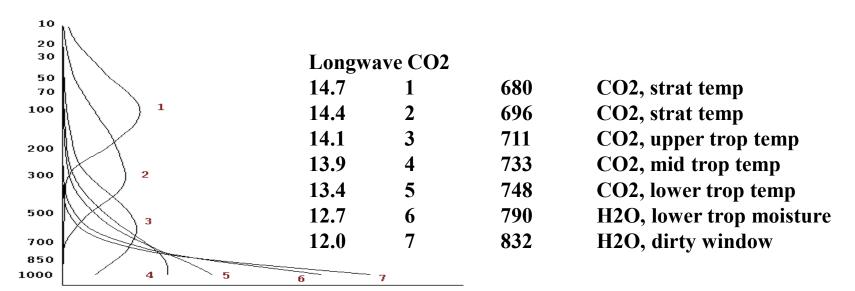
The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface.

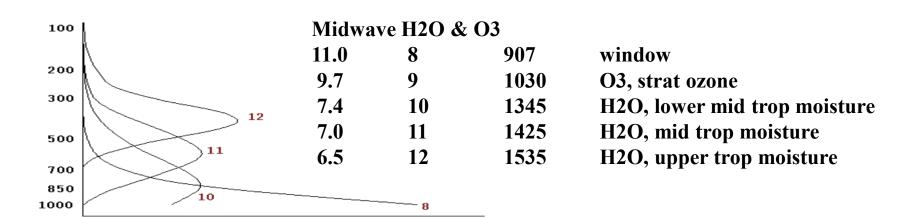
The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is $[d\tau_{\lambda}(p)/dp]$. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

Earth emitted spectra overlaid on Planck function envelopes

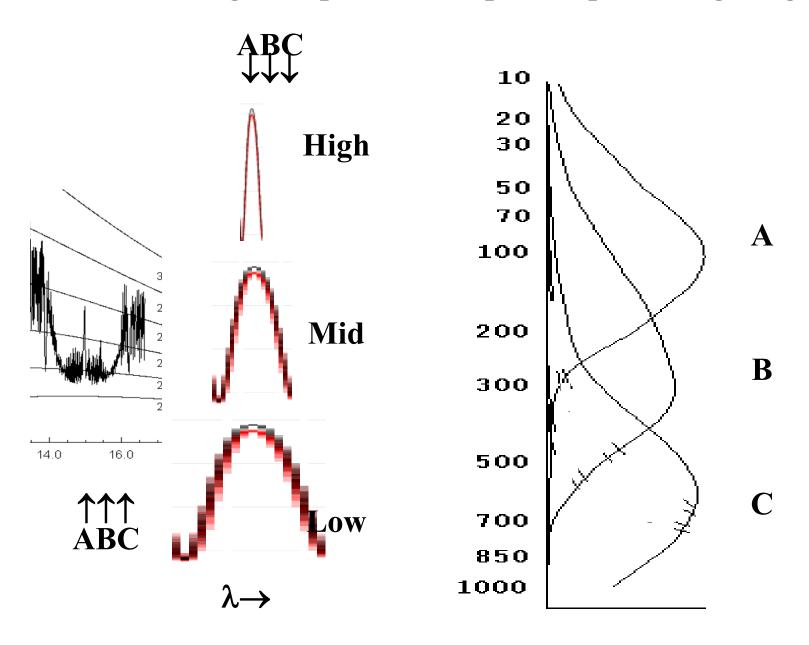


Weighting Functions

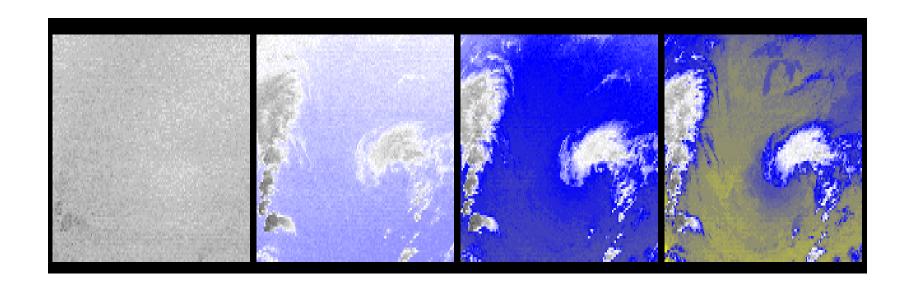




line broadening with pressure helps to explain weighting functions



CO2 channels see to different levels in the atmosphere

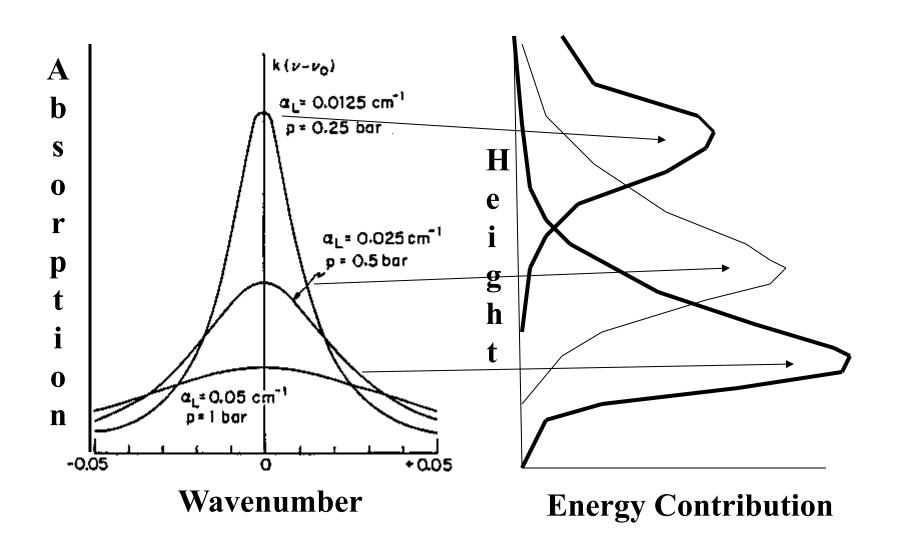


14.2 um

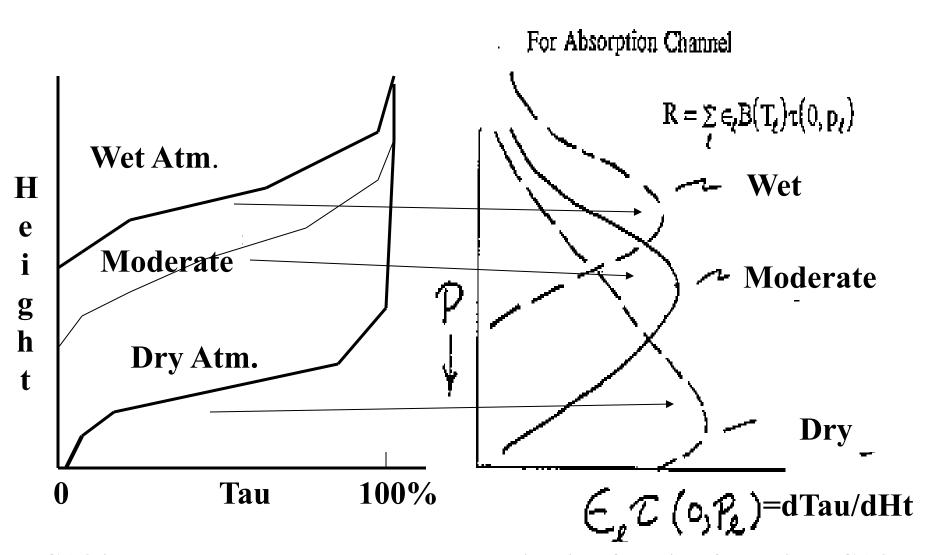
13.9 um 13.6 um

13.3 um

line broadening with pressure helps to explain weighting functions

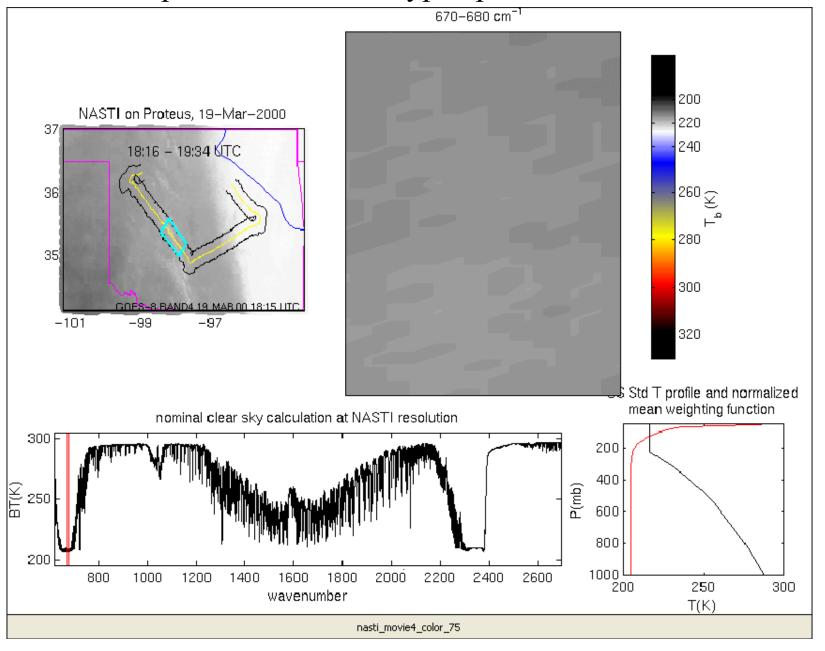


For a given water vapor spectral channel the weighting function depends on the amount of water vapor in the atmospheric column

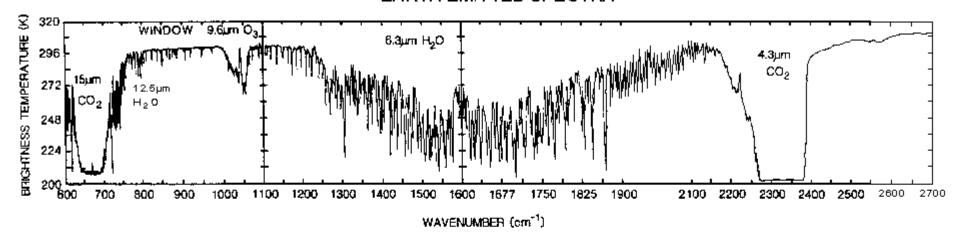


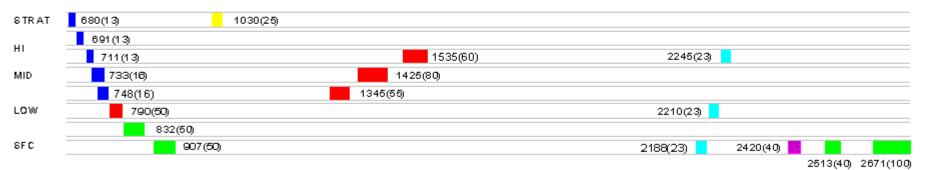
CO2 is about the same everywhere, the weighting function for a given CO2 spectral channel is the same everywhere

Improvements with Hyperspectral IR Data



EARTH EMITTED SPECTRA

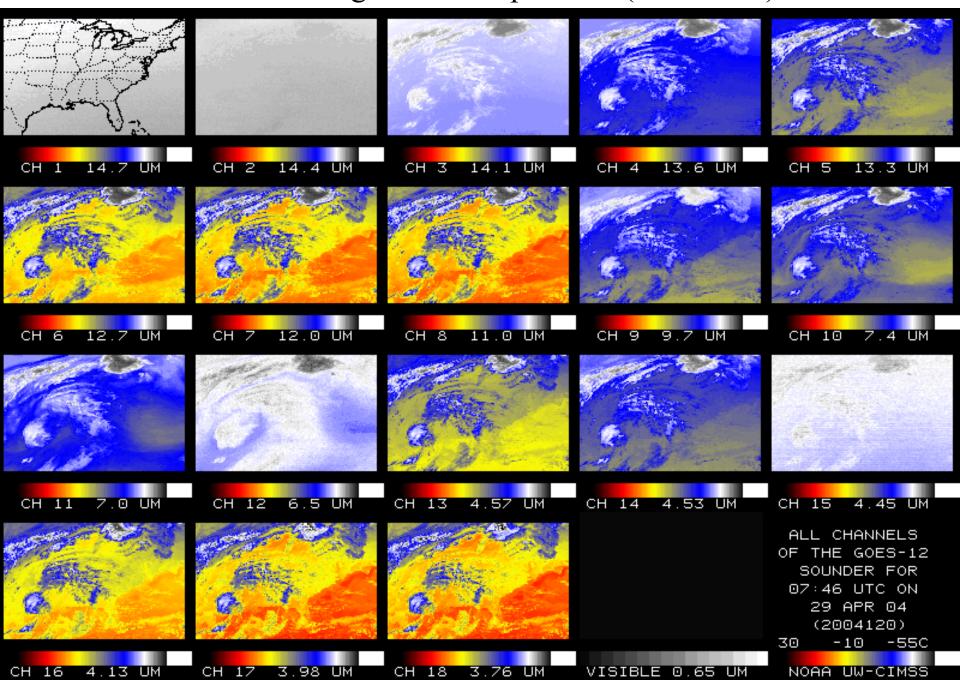




GOES-L SOUNDER SPECTRAL BANDS

COOPERATIVE INSTITUTE FOR METEOROLOGICAL SATELLITE STUDIES

GOES-12 Sounder – Brightness Temperature (Radiances) – 12 bands



Characteristics of RTE

- * Radiance arises from deep and overlapping layers
- * The radiance observations are not independent
- * There is no unique relation between the spectrum of the outgoing radiance and T(p) or Q(p)
- * T(p) is buried in an exponent in the denominator in the integral
- * Q(p) is implicit in the transmittance
- * Boundary conditions are necessary for a solution; the better the first guess the better the final solution

To investigate the RTE further consider the atmospheric contribution to the radiance to space of an infinitesimal layer of the atmosphere at height z, $dI_{\lambda}(z) = B_{\lambda}(T(z)) d\tau_{\lambda}(z)$.

Assume a well-mixed isothermal atmosphere where the density drops off exponentially with height $\rho = \rho_0 \exp(-\gamma z)$, and assume k_{λ} is independent of height, so that the optical depth can be written for normal incidence

$$\sigma_{\lambda} = \int_{z}^{\infty} k_{\lambda} \rho dz = \gamma^{-1} k_{\lambda} \rho_{o} \exp(-\gamma z)$$

and the derivative with respect to height

$$\frac{d\sigma_{\lambda}}{dz} = -k_{\lambda} \rho_{o} \exp(-\gamma z) = -\gamma \sigma_{\lambda}$$

Therefore, we may obtain an expression for the detected radiance per unit thickness of the layer as a function of optical depth,

The level which is emitting the most detected radiance is given by

$$\frac{d}{dz} \frac{dI_{\lambda}(z)}{dz} = 0 \text{, or where } \sigma_{\lambda} = 1.$$

Most of monochromatic radiance detected is emitted by layers near level of unit optical depth.

Profile Retrieval from Sounder Radiances

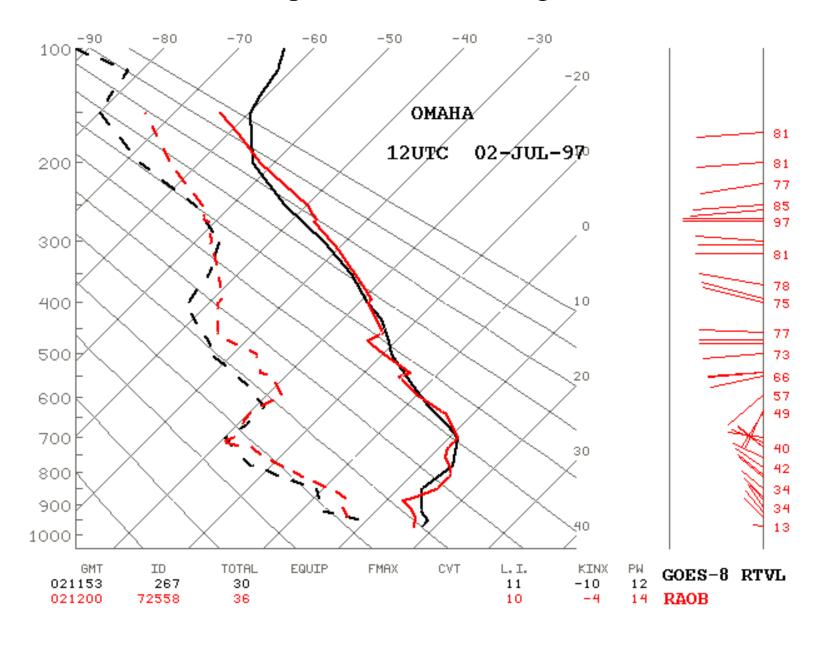
$$\begin{split} I_{\lambda} \; = \; \epsilon_{\lambda}{}^{sfc} \; B_{\lambda}(T(p_s)) \; \tau_{\lambda}(p_s) \stackrel{p_s}{-} \int\limits_{0}^{\infty} \; B_{\lambda}(T(p)) \; F_{\lambda}(p) \; [\; d\tau_{\lambda}(p) \, / \; dp \;] \; \; dp \; . \end{split}$$

I1, I2, I3,, In are measured with the sounder P(sfc) and T(sfc) come from ground based conventional observations $\tau_{\lambda}(p)$ are calculated with physics models (using for CO2 and O3) $\varepsilon_{\lambda}^{sfc}$ is estimated from a priori information (or regression guess)

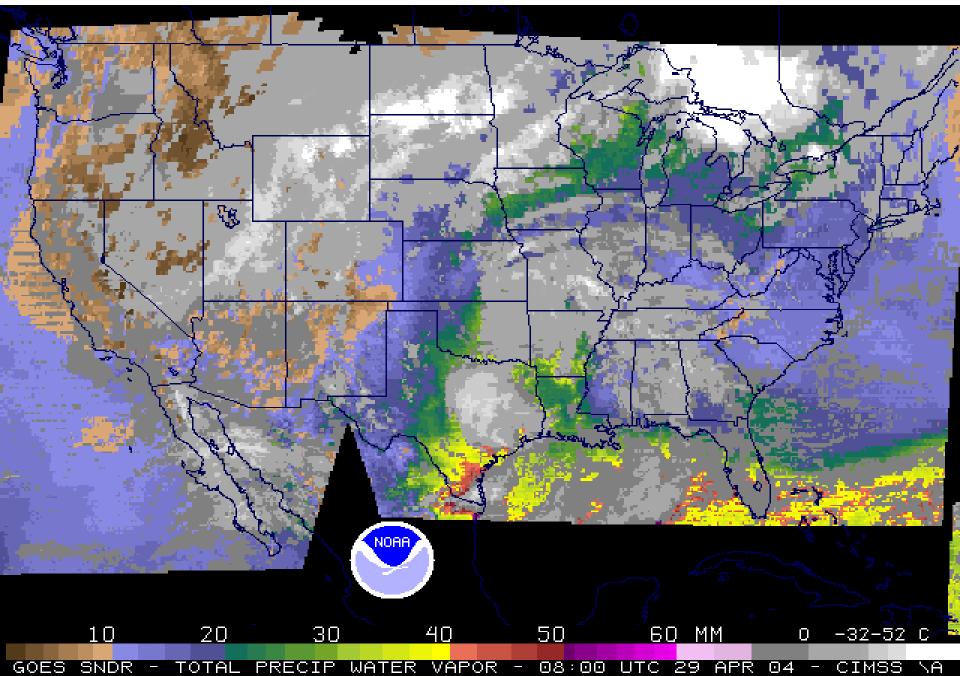
First guess solution is inferred from (1) in situ radiosonde reports, (2) model prediction, or (3) blending of (1) and (2)

Profile retrieval from perturbing guess to match measured sounder radiances

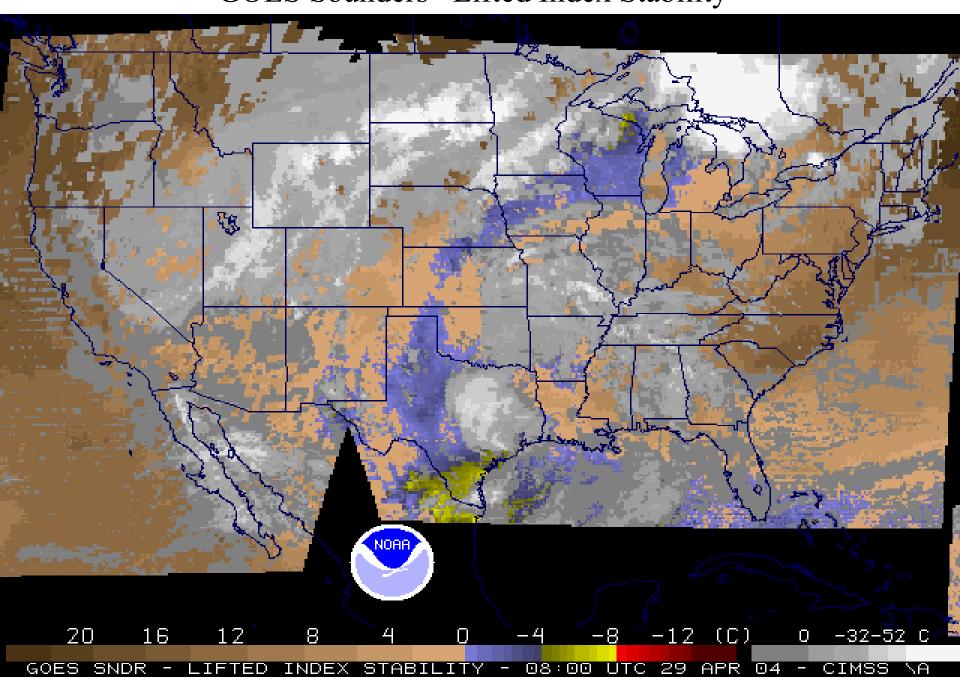
Example GOES Sounding

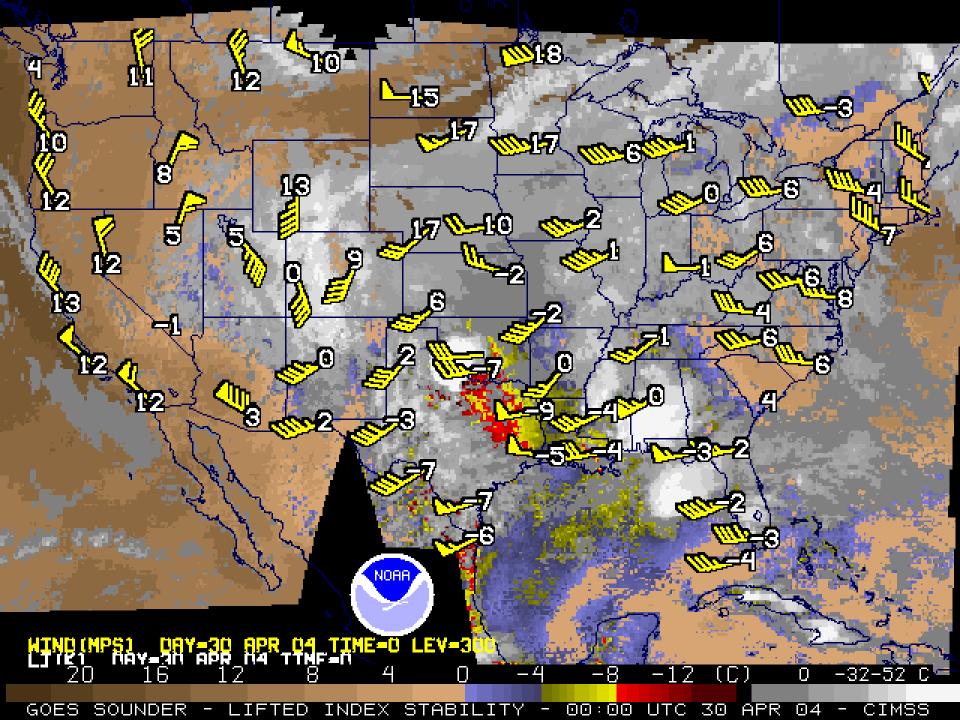


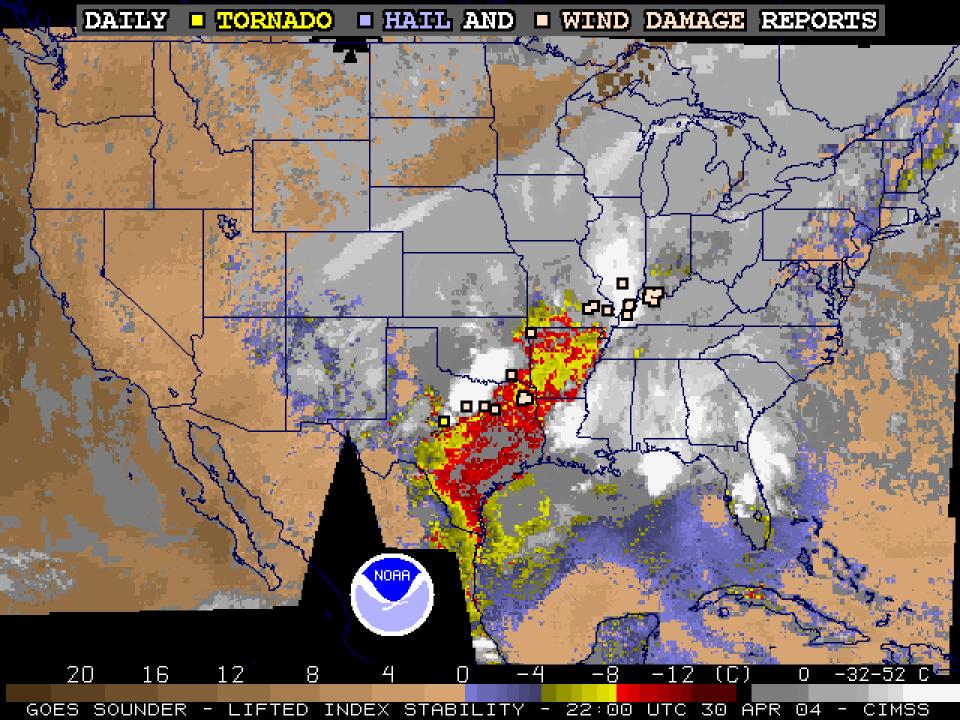
GOES Sounders –Total Precipitable Water



GOES Sounders –Lifted Index Stability







Sounder Retrieval Products

$$I_{\lambda} = \varepsilon_{\lambda}(sfc) B_{\lambda}(T(ps)) \tau_{\lambda}(ps) - \int_{0}^{ps} B_{\lambda}(T(p)) F_{\lambda}(p) [d\tau_{\lambda}(p)/dp] dp.$$

Direct

brightness temperatures

Derived in Clear Sky

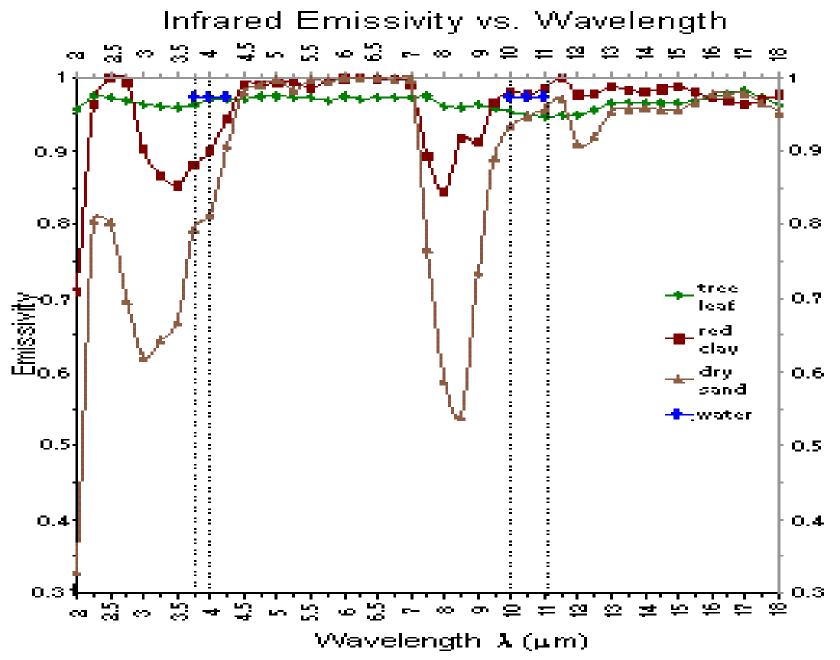
- 20 retrieved temperatures (at mandatory levels)
- 20 geo-potential heights (at mandatory levels)
- 11 dewpoint temperatures (at 300 hPa and below)
- 3 thermal gradient winds (at 700, 500, 400 hPa)
- 1 total precipitable water vapor
- 1 surface skin temperature
- 2 stability index (lifted index, CAPE)

Derived in Cloudy conditions

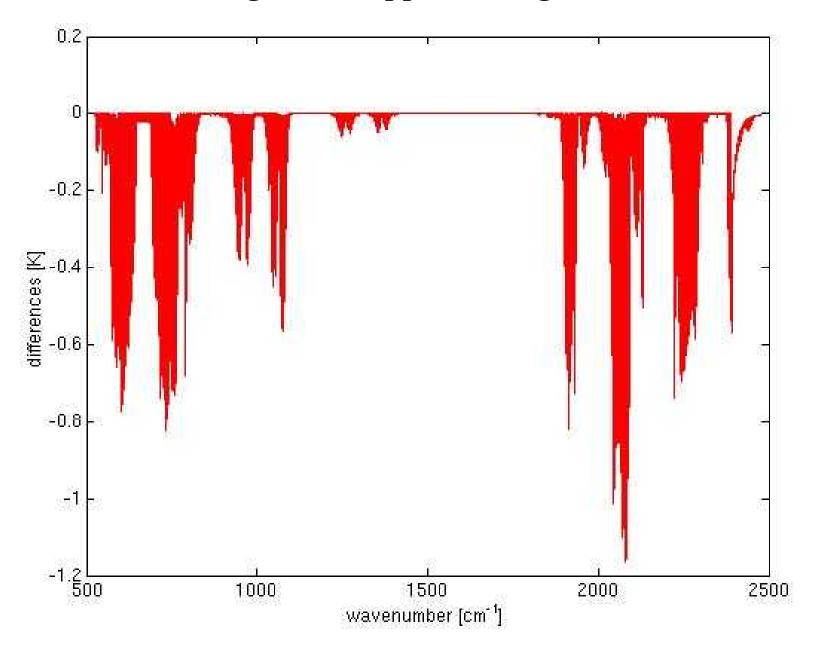
3 cloud parameters (amount, cloud top pressure, and cloud top temperature)

Mandatory Levels (in hPa)

sfc	780	300	70
1000	700	250	50
950	670	200	30
920	500	150	20
850	400	100	10



BT differences resulting from 10 ppmv change in CO2 concentration



Microwave RTE

Lectures in Monteponi September 2008

Paul Menzel UW/CIMSS/AOS

WAVELENGTH		FREQUENCY		WAVENUMBER	
cm	μm	Å	Hz	GHz	cm ⁻¹
10 ⁻⁵ Near Ultraviolet (I	0.1 JV)	1,000	3x10 ¹⁵		
4x10 ⁻⁵ Visible	0.4	4,000	7.5x10 ¹⁴		
7.5x10 ⁻⁵ Near Infrared (IR)	0.75	7,500	4x10 ¹⁴		13,333
2x10 ⁻³ Far Infrared (IR)	20	2x10 ⁵	1.5x10 ¹³		500
0.1 Microwave (MW)	10 ³		3x10 ¹¹	300	10

Radiation is governed by Planck's Law

$$c_2/\lambda T$$

$$B(\lambda,T) = c_1/\{ \lambda^5 [e -1] \}$$

In microwave region $c_2/\lambda T \ll 1$ so that

$$c_2/\lambda T$$

e = 1 + $c_2/\lambda T$ + second order

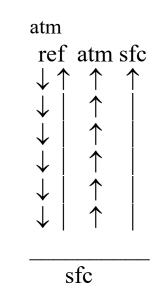
And classical Rayleigh Jeans radiation equation emerges

$$B_{\lambda}(T) \approx [c_1/c_2][T/\lambda^4]$$

Radiance is linear function of brightness temperature.

Microwave Form of RTE

$$\begin{array}{ll} I^{\rm sfc} \; = \; \epsilon_{\lambda} \, B_{\lambda}(T_s) \; \tau_{\lambda}(p_s) + (1 - \epsilon_{\lambda}) \; \tau_{\lambda}(p_s) \int\limits_{0}^{p_s} B_{\lambda}(T(p)) \; \frac{\partial \tau'_{\lambda}(p)}{\partial \; \ln \; p} \; d \; \ln \; p \\ \lambda \end{array}$$



In the microwave region $c_2/\lambda T \ll 1$, so the Planck radiance is linearly proportional to the brightness temperature

$$B_{\lambda}(T) \approx [c_1/c_2][T/\lambda^4]$$

So

$$T_{b\lambda} = \epsilon_{\lambda} T_{s}(p_{s}) \tau_{\lambda}(p_{s}) + \int_{p_{s}}^{0} T(p) F_{\lambda}(p) \frac{\partial \tau_{\lambda}(p)}{\partial \ln p} d \ln p$$

where

$$F_{\lambda}(p) = \left\{ 1 + (1 - \varepsilon_{\lambda}) \left[\frac{\tau_{\lambda}(p_s)}{\tau_{\lambda}(p)} \right]^2 \right\}.$$

The transmittance to the surface can be expressed in terms of transmittance to the top of the atmosphere by remembering

$$\tau'_{\lambda}(p) = \exp\left[-\frac{1}{g} \int_{s}^{p_{s}} k_{\lambda}(p) g(p) dp\right]$$

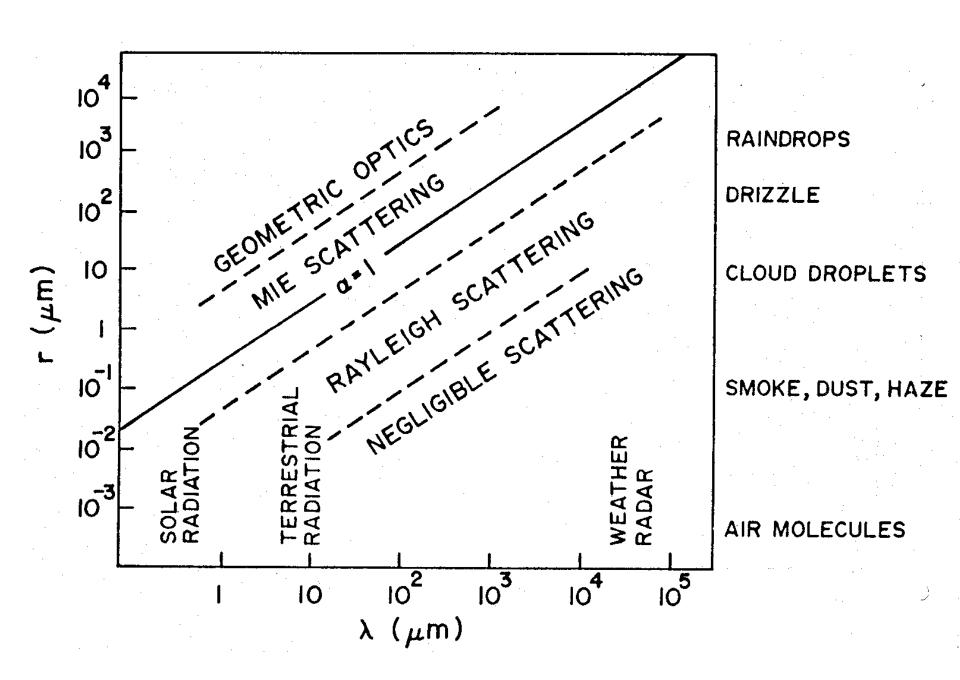
$$= \exp\left[-\int_{s}^{p_{s}} + \int_{s}^{p}\right]$$

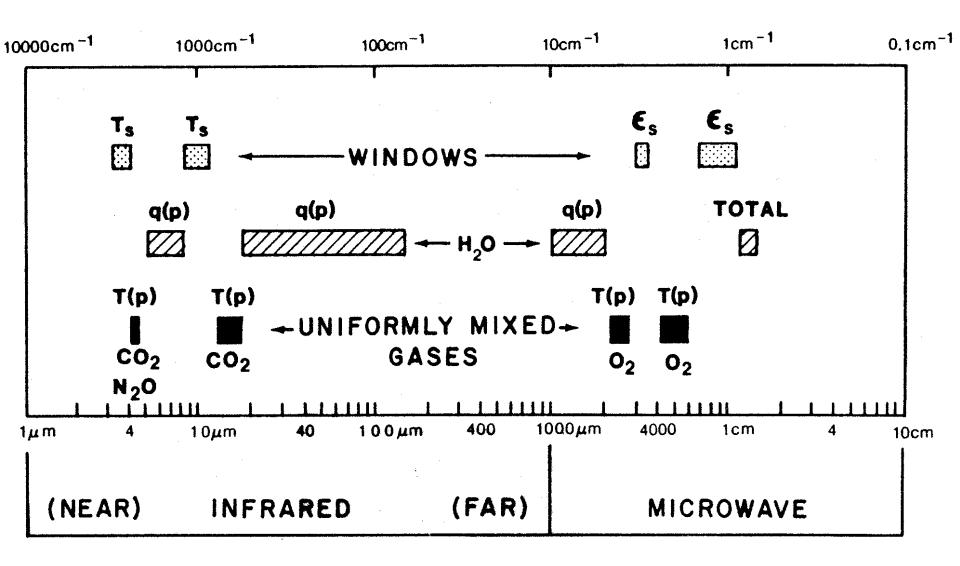
$$= \tau_{\lambda}(p_{s}) / \tau_{\lambda}(p) .$$

So

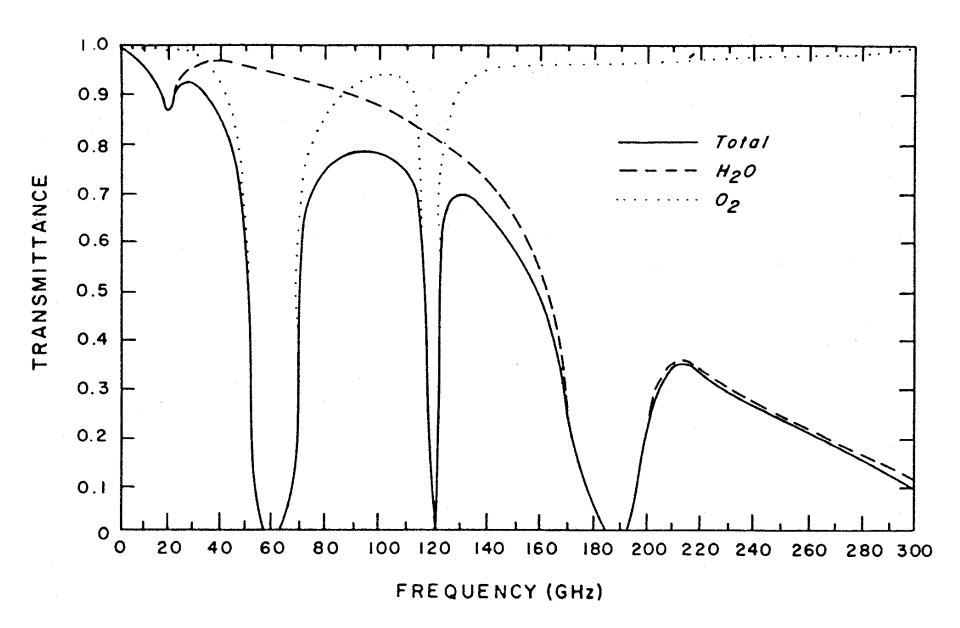
$$\frac{\partial \tau'_{\lambda}(p)}{\partial \, \ln \, p} \quad = \quad - \quad \frac{\tau_{\lambda}(p_s)}{(\tau_{\lambda}(p))^2} \quad \frac{\partial \tau_{\lambda}(p)}{\partial \, \ln \, p} \ .$$

[remember that $\tau_{\lambda}(p_s, p) \ \tau_{\lambda}(p, 0) = \tau_{\lambda}(p_s, 0)$ and $\tau_{\lambda}(p_s, p) = \tau_{\lambda}(p, p_s)$]





Spectral regions used for remote sensing of the earth atmosphere and surface from satellites. ε indicates emissivity, q denotes water vapour, and T represents temperature.



Microwave spectral bands

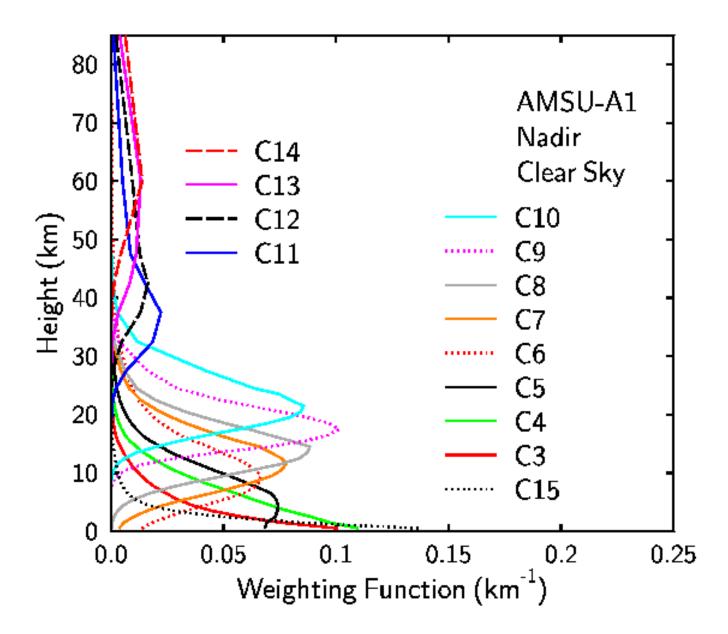
23.8 GHz dirty window H2O absorption

31.4 GHz window

60 GHz O2 sounding

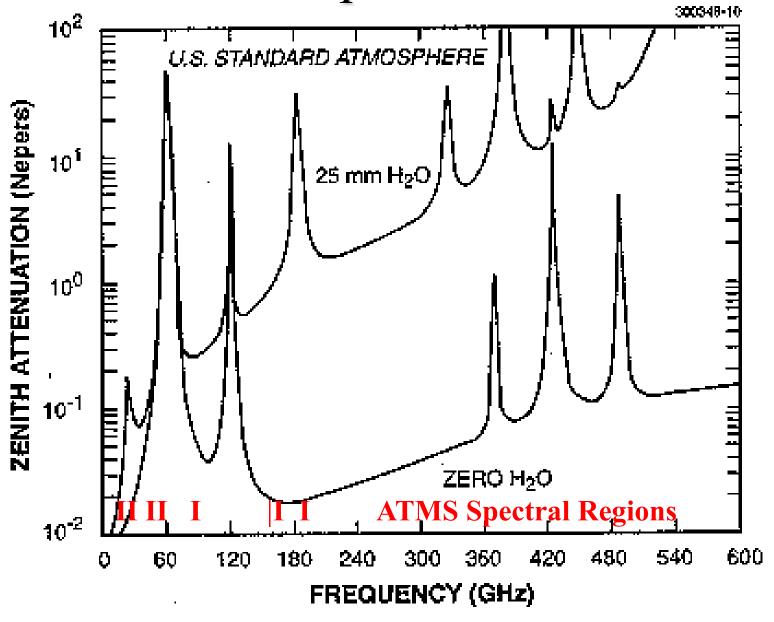
120 GHz O2 sounding

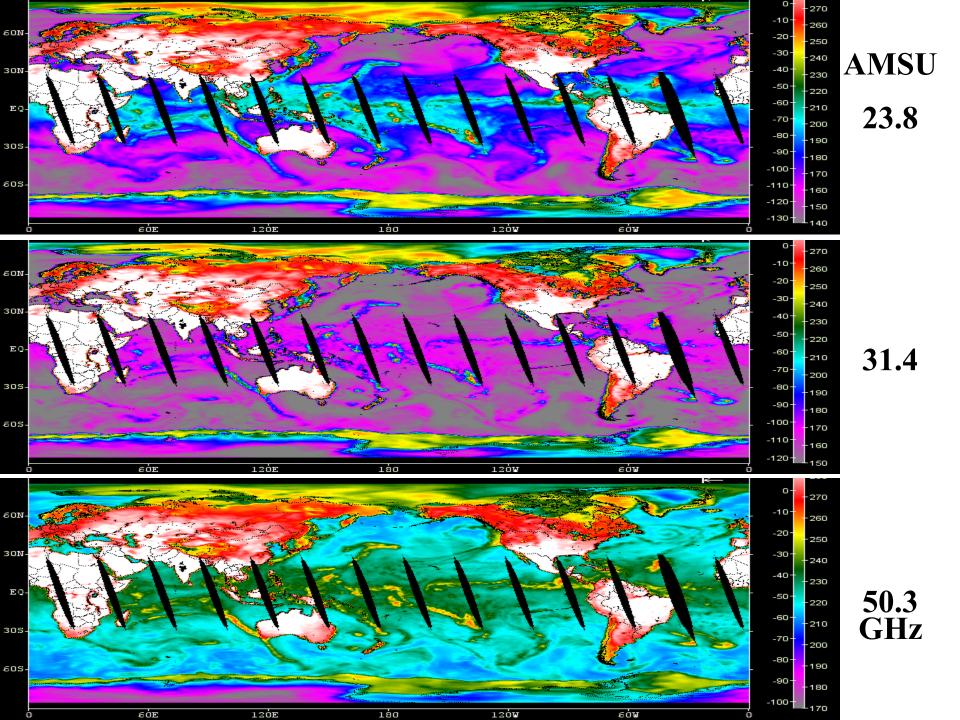
183 GHz H2O sounding

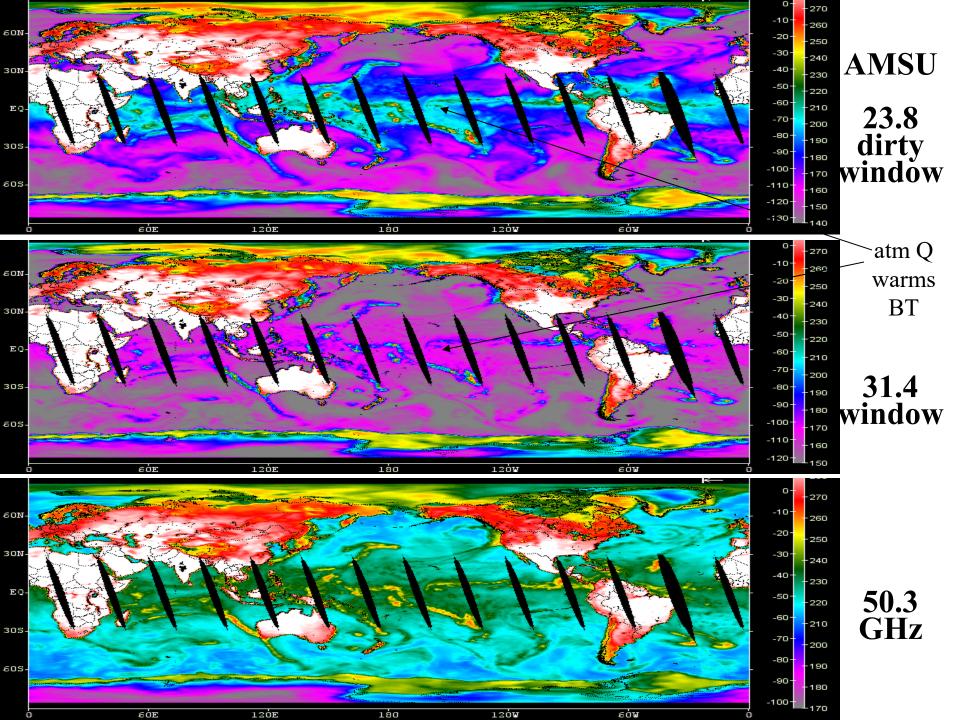


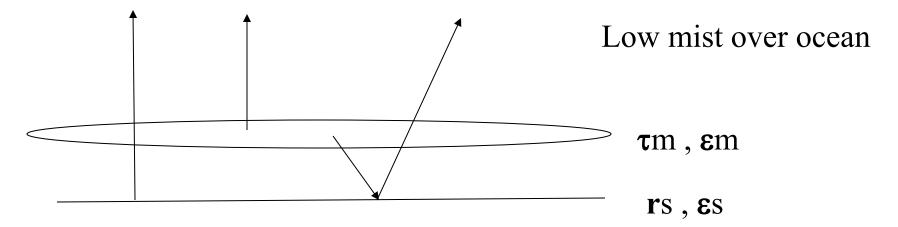
23.8, 31.4, 50.3, 52.8, 53.6, 54.4, 54.9, 55.5, 57.3 (6 chs), 89.0 GHz

Microwave Spectral Features









$$T_b = \varepsilon_s T_s \tau_m + \varepsilon_m T_m + \varepsilon_m r_s \tau_m T_m$$

$$T_b = \varepsilon_s T_s (1-\sigma_m) + \sigma_m T_m + \sigma_m (1-\varepsilon_s) (1-\sigma_m) T_m$$

So temperature difference of low moist over ocean from clear sky over ocean is given by

$$\Delta T_b = - \varepsilon_s \sigma_m T_s + \sigma_m T_m + \sigma_m (1-\varepsilon_s) (1-\sigma_m) T_m$$

For $\varepsilon_s \sim 0.5$ and $T_s \sim T_m$ this is always positive for $0 < \sigma_m < 1$

