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All satellite remote sensing systems involve the 
measurement of electromagnetic radiation.   
 
Electromagnetic radiation has the properties of both 
waves and discrete particles, although the two are 
never manifest simultaneously. 
 
Electromagnetic radiation is usually quantified 
according to its wave-like properties; for many 
applications it considered to be a continuous train of 
sinusoidal shapes. 

 



Remote sensing uses radiant energy that is reflected and emitted from 
Earth at various “wavelengths” of the electromagnetic spectrum 
 
Our eyes are sensitive to the visible portion of the EM spectrum 

 

The Electromagnetic Spectrum 



Radiation is characterized by wavelength λ and amplitude a 



Terminology of radiant energy 

Energy from  
the Earth Atmosphere 

over time is 

Flux 
which strikes the detector area 

Irradiance 
at a given wavelength interval 

Monochromatic 
Irradiance 

over a solid angle on the Earth 

Radiance observed by  
satellite radiometer 

is described by 

can be inverted to 
The Planck function 

Brightness temperature 



Definitions of Radiation 
__________________________________________________________________ 
 
   QUANTITY  SYMBOL  UNITS 
__________________________________________________________________ 
 
 
   Energy   dQ  Joules 
 
   Flux   dQ/dt  Joules/sec = Watts 
 
   Irradiance  dQ/dt/dA  Watts/meter2 
 
   Monochromatic  dQ/dt/dA/dλ  W/m2/micron 
     Irradiance 
       or 
 
   dQ/dt/dA/dν  W/m2/cm-1 
 
   Radiance  dQ/dt/dA/dλ/dΩ  W/m2/micron/ster 
 
       or 
 
   dQ/dt/dA/dν/dΩ  W/m2/cm-1/ster 
__________________________________________________________________ 

 



Radiation from the Sun 
 
The rate of energy transfer by electromagnetic radiation is called the radiant flux, 
which has units of energy per unit time. It is denoted by  
 
 F = dQ / dt 
 
and is measured in joules per second or watts.  For example, the radiant flux from 
the sun is about 3.90 x 10**26 W. 
 
The radiant flux per unit area is called the irradiance (or radiant flux density in 
some texts).  It is denoted by  
 
 E = dQ / dt / dA 
 
and is measured in watts per square metre.  The irradiance of electromagnetic 
radiation passing through the outermost limits of the visible disk of the sun (which 
has an approximate radius of 7 x 10**8 m) is given by 
 
                3.90 x 1026 
 E (sun sfc)    =                                       =  6.34 x 107 W m-2 . 
              4π (7 x 108)2 
   



The solar irradiance arriving at the earth can be calculated by realizing that the flux is a 
constant, therefore 
 
 E (earth sfc) x 4πRes

2 = E (sun sfc) x 4πRs
2, 

 
where Res is the mean earth to sun distance (roughly 1.5 x 1011 m) and Rs is the solar 
radius.  This yields 
 
             E (earth sfc) = 6.34 x 107 (7 x 108 / 1.5 x 1011)2  = 1380 W m-2. 
 
The irradiance per unit wavelength interval at wavelength λ is called the monochromatic 
irradiance, 
 
 Eλ = dQ / dt / dA / dλ , 
 
and has the units of watts per square metre per micrometer.  With this definition, the 
irradiance is readily seen to be  
 
              ∞ 
 E    =    ∫  Eλ dλ . 
  o 
 



In general, the irradiance upon an element of surface area may consist of contributions which 
come from an infinity of different directions.  It is sometimes necessary to identify the part of 
the irradiance that is coming from directions within some specified infinitesimal arc of solid 
angle dΩ.  The irradiance per unit solid angle is called the radiance, 
 
 I = dQ / dt / dA / dλ / dΩ, 
 
and is expressed in watts per square metre per micrometer per steradian.  This quantity is 
often also referred to as intensity and denoted by the letter B (when referring to the Planck 
function).  
 
If the zenith angle, θ, is the angle between the direction of the radiation and the normal to the 
surface, then the component of the radiance normal to the surface is then given by I cos θ.  
The irradiance represents the combined effects of the normal component of the radiation 
coming from the whole hemisphere; that is, 
 
           E = ∫  I cos θ dΩ  where in spherical coordinates dΩ = sin θ dθ dφ . 
                 Ω 
Radiation whose radiance is independent of direction is called isotropic radiation.  In this 
case, the integration over dΩ can be readily shown to be equal to π so that 
 
 E = π I . 
 
 



Radiation is governed by Planck’s Law 
 

                         c2 /λT 
 B(λ,T)  =  c1

 /{ λ 5 [e         -1] }     
 
Summing the Planck function at one temperature 
over all wavelengths yields the energy of the 
radiating source 
 
 
 E    =  Σ B(λ, T) =  σT4                            
            λ   
 
Brightness temperature is uniquely related to 
radiance for a given wavelength by the Planck 
function. 



Using wavelengths 

                      c2/λT 
Planck’s Law   B(λ,T)  =  c1 / λ5 / [e         -1]     (mW/m2/ster/cm) 
           where λ =  wavelengths in cm 
   T = temperature of emitting surface (deg K) 
   c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4) 
   c2 = 1.438769 (cm deg K) 
 
Wien's Law   dB(λmax,T) / dλ = 0 where λ(max)  = .2897/T 
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) 
with temperature increase.  Note B(λmax,T) ~ T5.  
                      ∞ 
Stefan-Boltzmann Law  E  =  π ∫ B(λ,T) dλ =  σT4, where σ = 5.67 x 10-8 W/m2/deg4. 
                        o 
states that irradiance of a black body (area under Planck curve) is proportional to T4 .  
Brightness Temperature 
                            c 1 
  T  =  c2 / [λ ln( _____ + 1)]  is determined by inverting Planck function 
                                  λ5Bλ 



Spectral Distribution of Energy Radiated  
from Blackbodies at Various Temperatures 





B(λmax,T) ∝ T5 

B(λmax,6000) ~ 3.2 x 107 

B(λmax,300) ~ 1 x 101 

so 
B(λmax,6000) / B(λmax,300) ~ 3 x 106 
 

and 
(6000/300)5 =   (20)5 = 3.2 x 106 
 

which is the same 
 



 

Bλ/Bλmax 
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Using wavenumbers 

                   c2ν/T 
Planck’s Law   B(ν,T)  =  c1ν3 / [e         -1]      (mW/m2/ster/cm-1) 

           where ν = # wavelengths in one centimeter (cm-1) 
   T = temperature of emitting surface (deg K) 
   c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4) 
   c2 = 1.438769 (cm deg K) 
 
Wien's Law   dB(νmax,T) / dν = 0 where ν(max)  = 1.95T 
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) 
with temperature increase.  Note B(νmax,T) ~ T**3.  
                      ∞ 
Stefan-Boltzmann Law  E  =  π ∫ B(ν,T) dν =  σT4, where σ = 5.67 x 10-8 W/m2/deg4. 
                        o 
states that irradiance of a black body (area under Planck curve) is proportional to T4 . 
 
Brightness Temperature 
                         c1ν3 
  T  =  c2ν/[ln(______ + 1)]  is determined by inverting Planck function 
                                Bν 



 



 

Bν /Bνmax 



B(λ,T) versus B(ν,T) 

B(λmax,T)~T5  B(νmax,T)~T3 

Planck Radiances
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Using wavenumbers   Using wavelengths 

  c2ν/T                       c2 /λT 
B(ν,T)  =  c1ν3 / [e         -1]   B(λ,T)  =  c1

 /{ λ 5 [e         -1] }  
(mW/m2/ster/cm-1)   (mW/m2/ster/µm) 
 
 
ν(max in cm-1)  = 1.95T    λ(max in cm)T  = 0.2897 
 
B(νmax,T) ~ T**3.    B(λ max,T) ~ T**5.  
 
          ∞               ∞ 
E  =  π ∫ B(ν,T) dν =  σT4,   E  =  π ∫ B(λ,T) d λ =  σT4,  
           o                o 
                 c1ν3               c1

      

T  =  c2ν/[ln(______ + 1)]    T  =  c2/[λ ln(______ + 1)] 
         Bν                 λ5 Bλ 



Temperature sensitivity, or the percentage change in radiance corresponding to a 
percentage change in temperature, α, is defined as  
 
 dB/B  =  α dT/T.   
 
The temperature sensivity indicates the power to which the Planck radiance depends 
on temperature, since B proportional to Tα satisfies the equation.  For infrared 
wavelengths,  
 
 α  =  c2ν/T  =  c2/λT.  
__________________________________________________________________ 
 
Wavenumber                  Typical Scene           Temperature  
       Temperature             Sensitivity 
 
 700    220    4.58 
 900    300    4.32 
1200    300    5.76 
1600    240    9.59 
2300    220   15.04 
2500    300   11.99 



dB/B  =  α dT/T or B = c Tα  where α  =  c2/λT for a small temperature window around T.  
 
B = B(T0) + (dB/dT)0 (ΔT) + (d2B/dT2 )0(ΔT)2 +  O(3) 
      
     negligible 
So to first order 
c (T0 + ΔT) α  =  c T0

α  + c α T0 α-1 (ΔT) 
c (T0 + ΔT) α  -  c T0

α  = c α T0 α-1 (ΔT) 
ΔB = c α T0 α-1 (ΔT) 
ΔB/B  =  α ΔT/T 
 
Also to first order 
(T0 + ΔT) α  =  T0

α + α T0 α-1 (ΔT) 
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1 

B (λ, T) / B (λ, 273K)  

200                           250                           300 
          Temperature (K) 

4μm 

6.7μm 

10μm 

15μm 

microwave 

Temperature Sensitivity of B(λ,T) for typical earth scene temperatures  





 B(10 um,T) / B(10 um,273) ∝ T4 

B(10 um,273)= 6.1 
B(10 um,200)= 0.9 → 0.15 
B(10 um,220)= 1.7 → 0.28 
B(10 um,240)= 3.0 → 0.49 
B(10 um,260)= 4.7 → 0.77 
B(10 um,280)= 7.0 → 1.15 
B(10 um,273)= 9.9 → 1.62 
 

1 

200                     300 



 B(4 um,T) / B(4 um,273) ∝ T12 

B(4 um,273)= 2.2 x 10-1   
B(4 um,200)= 1.8 x 10-3 → 0.0 
B(4 um,220)= 9.2 x 10-3 → 0.0 
B(4 um,240)= 3.6 x 10-2 → 0.2 
B(4 um,260)= 1.1 x 10-1 → 0.5 
B(4 um,280)= 3.0 x 10-1 → 1.4 
B(4 um,273)= 7.2 x 10-1 → 3.3 
 

1 

200                     300 



 B(0.3 cm, T) / B(0.3 cm,273) ∝ T 

B(0.3 cm,273)= 2.55 x 10-4 

B(0.3 cm,200)= 1.8 → 0.7 
B(0.3 cm,220)= 2.0 → 0.78 
B(0.3 cm,240)= 2.2 → 0.86 
B(0.3 cm,260)= 2.4 → 0.94 
B(0.3 cm,280)= 2.6 → 1.02 
B(0.3 cm,273)= 2.8 → 1.1 
 

1 

200                     300 



Radiation is governed by Planck’s Law 
 

                              c2 /λT 
  B(λ,T)  =  c1

 /{ λ 5 [e         -1] }     
 
In microwave region c2 /λT << 1 so that                          

       c2 /λT 
  e          = 1 + c2 /λT  +  second order 
 
And classical Rayleigh Jeans radiation equation emerges  
 
   Bλ(T)  ≈  [c1 / c2 ] [T / λ4] 
               
Radiance is linear function of brightness temperature. 



 

Cloud edges and broken clouds appear different in 11 and 4 um images. 
 
T(11)**4=(1-N)*Tclr**4+N*Tcld**4~(1-N)*300**4+N*200**4 
T(4)**12=(1-N)*Tclr**12+N*Tcld**12~(1-N)*300**12+N*200**12 
 
Cold part of pixel has more influence for B(11) than B(4) 
 



Table 6.1  Longwave and Shortwave Window Planck Radiances (mW/m**2/ster/cm-1) 
and Brightness Temperatures (degrees K) as a function of Fractional Cloud Amount (for 
cloud of 220 K and surface of 300 K) using B(T) = (1-N)*B(Tsfc) + N*B(Tcld). 
 
 

 
Cloud 

  Fraction N 

 
Longwave Window 
 Rad              Temp 

 
Shortwave Window 
 Rad            Temp 

 
Ts -T1 

 
1.0 

 
 23.5 

 
220 

 
.005 

 
220 

 
 0 

 
 .8 

 
 42.0 

 
244 

 
.114 

 
267 

 
23 

 
 .6 

 
 60.5 

 
261 

 
.223 

 
280 

 
19 

 
 .4 

 
 79.0 

 
276 

 
.332 

 
289 

 
13 

 
 .2 

 
 97.5 

 
289 

 
.441 

 
295 

 
 6 

 
 .0 

 
 116.0 

 
300 

 
.550 

 
300 

 
 0 

 


Table 6.1  Longwave and Shortwave Window Planck Radiances (mW/m**2/ster/cm-1) and Brightness Temperatures (degrees K) as a function of Fractional Cloud Amount (for cloud of 220 K and surface of 300 K) using B(T) = (1-N)*B(Tsfc) + N*B(Tcld).


		Cloud


  Fraction N

		
Longwave Window


 Rad              Temp

		Shortwave Window
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		Ts -T1



		1.0

		
23.5

		220

		.005

		220

		 0



		 .8

		
42.0

		244

		.114

		267

		23



		 .6

		
60.5

		261

		.223

		280

		19



		 .4

		
79.0

		276
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		 .2
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		289

		.441
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		300

		.550
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T 
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BT4 

BT11 

SW and LW BTs for different cloud amounts 
when Tcld=220 and Tsfc=300 



Broken clouds appear different in 8.6, 11 and 12 um images; 
 assume Tclr=300 and Tcld=230 
T(11)-T(12)=[(1-N)*B11(Tclr)+N*B11(Tcld)]-1  
  - [(1-N)*B12(Tclr)+N*B12(Tcld)]-1 

T(8.6)-T(11)=[(1-N)*B8.6(Tclr)+N*B8.6(Tcld)]-1  
  - [(1-N)*B11(Tclr)+N*B11(Tcld)]-1 

Cold part of pixel has more influence at longer wavelengths 

8.6-11 

11-12 

N=0 
N=0.2 

N=0.8 
N=0.6 

N=0.4 

N=1.0 



Cold clouds appear grainy in 4 um MODIS images. 
 
∆R = Rmax/ 213  and ∆T = ∆R / [dB/dT] 
 
dB/dT(4) is 100 times smaller at 200 K than at 300K; 
Truncation error in cold scenes for 4 µm is several degrees K! 
 
dB/dT(11) is only 4 times smaller (hence it is not noticeable).   
 





NEDR vs NEDT at 4 and 11 µm 



B and dB/dT at 4 and 11 µm  



For GOES 
with 10 bit data it is even worse 

∆R = Rmax/ 210   
and  

∆T = ∆R / [dB/dT] 
 



W/m2/ster/um 
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