Radiation and the Planck Function

Lectures in Benevento
June 2007

Paul Menzel UW/CIMSS/AOS

All satellite remote sensing systems involve the measurement of electromagnetic radiation.

Electromagnetic radiation has the properties of both waves and discrete particles, although the two are never manifest simultaneously.

Electromagnetic radiation is usually quantified according to its wave-like properties; for many applications it considered to be a continuous train of sinusoidal shapes.

The Electromagnetic Spectrum

Remote sensing uses radiant energy that is reflected and emitted from Earth at various "wavelengths" of the electromagnetic spectrum

Our eyes are sensitive to the visible portion of the EM spectrum

Radiation is characterized by wavelength λ and amplitude a

Terminology of radiant energy

Definitions of Radiation

Radiation from the Sun

The rate of energy transfer by electromagnetic radiation is called the radiant flux, which has units of energy per unit time. It is denoted by

$$
\mathrm{F}=\mathrm{dQ} / \mathrm{dt}
$$

and is measured in joules per second or watts. For example, the radiant flux from the sun is about $3.90 \times 10^{* *} 26 \mathrm{~W}$.

The radiant flux per unit area is called the irradiance (or radiant flux density in some texts). It is denoted by

$$
\mathrm{E}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA}
$$

and is measured in watts per square metre. The irradiance of electromagnetic radiation passing through the outermost limits of the visible disk of the sun (which has an approximate radius of $7 \times 10^{* *} 8 \mathrm{~m}$) is given by

$$
\mathrm{E}(\operatorname{sun} \mathrm{sfc})=\frac{3.90 \times 10^{26}}{4 \pi\left(7 \times 10^{8}\right)^{2}}=6.34 \times 10^{7} \mathrm{~W} \mathrm{~m}^{-2}
$$

The solar irradiance arriving at the earth can be calculated by realizing that the flux is a constant, therefore

$$
\mathrm{E}\left(\text { earth sfc) } \times 4 \pi \mathrm{R}_{\mathrm{es}}{ }^{2}=\mathrm{E}(\text { sun sfc }) \times 4 \pi \mathrm{R}_{\mathrm{s}}{ }^{2},\right.
$$

where $R_{\text {es }}$ is the mean earth to sun distance (roughly $1.5 \times 10^{11} \mathrm{~m}$) and R_{s} is the solar radius. This yields

$$
\mathrm{E}(\text { earth sfc })=6.34 \times 10^{7}\left(7 \times 10^{8} / 1.5 \times 10^{11}\right)^{2}=1380 \mathrm{~W} \mathrm{~m}^{-2}
$$

The irradiance per unit wavelength interval at wavelength λ is called the monochromatic irradiance,

$$
\mathrm{E}_{\lambda}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA} / \mathrm{d} \lambda,
$$

and has the units of watts per square metre per micrometer. With this definition, the irradiance is readily seen to be

$$
\mathrm{E}=\int_{0}^{\infty} \mathrm{E}_{\lambda} \mathrm{d} \lambda
$$

In general, the irradiance upon an element of surface area may consist of contributions which come from an infinity of different directions. It is sometimes necessary to identify the part of the irradiance that is coming from directions within some specified infinitesimal arc of solid angle $\mathrm{d} \Omega$. The irradiance per unit solid angle is called the radiance,

$$
\mathrm{I}=\mathrm{dQ} / \mathrm{dt} / \mathrm{dA} / \mathrm{d} \lambda / \mathrm{d} \Omega,
$$

and is expressed in watts per square metre per micrometer per steradian. This quantity is often also referred to as intensity and denoted by the letter B (when referring to the Planck function).

If the zenith angle, θ, is the angle between the direction of the radiation and the normal to the surface, then the component of the radiance normal to the surface is then given by $\mathrm{I} \cos \theta$. The irradiance represents the combined effects of the normal component of the radiation coming from the whole hemisphere; that is,

$$
\mathrm{E}=\int_{\Omega} \mathrm{I} \cos \theta \mathrm{~d} \Omega \quad \text { where in spherical coordinates } \mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{~d} \varphi .
$$

Radiation whose radiance is independent of direction is called isotropic radiation. In this case, the integration over $\mathrm{d} \Omega$ can be readily shown to be equal to π so that

$$
\mathrm{E}=\pi \mathrm{I}
$$

Radiation is governed by Planck's Law

$$
\mathbf{B}(\lambda, T)=\mathrm{c}_{1} /\left\{\lambda^{5}\left[\mathrm{e}^{\mathrm{c}_{2} / \lambda T}-1\right]\right\}
$$

Summing the Planck function at one temperature over all wavelengths yields the energy of the radiating source

$$
\mathbf{E}=\sum_{\lambda} \mathbf{B}(\lambda, \mathbf{T})=\sigma \mathbf{T}^{4}
$$

Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

Using wavelengths

Planck's Law

where

$$
\mathrm{c}_{2} / \lambda \mathrm{T}
$$

$$
\mathrm{B}(\lambda, \mathrm{~T})=\mathrm{c}_{1} / \lambda^{5} /\left[\begin{array}{ll}
\mathrm{e} & -1]
\end{array}\left(\mathrm{mW} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}\right)\right.
$$

$\lambda=$ wavelengths in cm
$\mathrm{T}=$ temperature of emitting surface (deg K)
$\mathrm{c}_{1}=1.191044 \times 10-5\left(\mathrm{~mW} / \mathrm{m}^{2} /\right.$ ster $\left./ \mathrm{cm}^{-4}\right)$
$\mathrm{c}_{2}=1.438769(\mathrm{~cm} \mathrm{deg} \mathrm{K})$

Wien's Law

$\mathrm{dB}\left(\lambda_{\text {max }}, \mathrm{T}\right) / \mathrm{d} \lambda=0$ where $\lambda(\max)=.2897 / \mathrm{T}$
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note $B\left(\lambda_{\max }, T\right) \sim T^{5}$.
∞
Stefan-Boltzmann Law $E=\pi \int B(\lambda, T) d \lambda=\sigma T^{4}$, where $\sigma=5.67 \times 10-8 \mathrm{~W} / \mathrm{m} 2 / \operatorname{deg} 4$. 0 states that irradiance of a black body (area under Planck curve) is proportional to T^{4}.

Brightness Temperature

$$
\mathrm{T}=\mathrm{c}_{2} /\left[\lambda \ln \left(\frac{\mathrm{c}_{1}}{\lambda^{5} \mathrm{~B}_{\lambda}}+1\right)\right] \text { is determined by inverting Planck function }
$$

Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

- Wavelength C Wavenumber - Unnomalized C Normalized

Wave Min
0.10

Temp (K)
200.00

New Plot
Add Plot
Save JPEG

$B\left(\lambda_{\max }, T\right) \propto T^{5}$

$B(\lambda \max , 6000) \sim 3.2 \times 10^{7}$
$B(\lambda \max , 300) \sim 1 \times 10^{1}$
so
$B(\lambda \max , 6000) / B(\lambda \max , 300) \sim 3 \times 10^{6}$
and
$(6000 / 300)^{5}=(20)^{5}=3.2 \times 10^{6}$
which is the same

Using wavenumbers

Planck's Law

where

Wien's Law

$$
\mathrm{c}_{2} \mathrm{v} / \mathrm{T}
$$

$$
\mathrm{B}(\mathrm{v}, \mathrm{~T})=\mathrm{c}_{1} \mathrm{v}^{3} /\left[\begin{array}{ll}
\mathrm{e} & -1
\end{array}\right] \quad\left(\mathrm{mW} / \mathrm{m}^{2} / \text { ster } / \mathrm{cm}^{-1}\right)
$$

$v=\#$ wavelengths in one centimeter (cm-1)
$\mathrm{T}=$ temperature of emitting surface $(\operatorname{deg} \mathrm{K})$
$\mathrm{c}_{1}=1.191044 \times 10-5\left(\mathrm{~mW} / \mathrm{m}^{2} /\right.$ ster $\left./ \mathrm{cm}^{-4}\right)$
$\mathrm{c}_{2}=1.438769(\mathrm{~cm} \mathrm{deg} \mathrm{K})$
indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note $\mathrm{B}\left(v_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{*} * 3$.
∞
Stefan-Boltzmann Law $E=\pi \int B(v, T) d \nu=\sigma T^{4}$, where $\sigma=5.67 \times 10-8 \mathrm{~W} / \mathrm{m} 2 / \operatorname{deg} 4$.
0
states that irradiance of a black body (area under Planck curve) is proportional to T^{4}.

Brightness Temperature

$$
T=c_{2} v /\left[\ln \left(\frac{c_{1} v^{3}}{B_{v}}+1\right)\right] \text { is determined by inverting Planck function }
$$

C Wavelength C Wavenumber

- Unnomalized C Normalized Wave Min 10.00 Wave Max 10000.00
Temp (K) 200.00

New Plot

Save JPEG

| C Wavelength |
| :--- | :--- |
| C Wavenumber |

\bigcirc Unnomalized

- Nomalized

Wave Min 10.00 Wave Max 10000.00 Temp (K)
200.00

New Plot
Add Plot
Save JPEG

Using wavenumbers

$$
\mathrm{c}_{2} \mathrm{v} / \mathrm{T}
$$

$$
\mathrm{B}(v, \mathrm{~T})=\mathrm{c}_{1} v^{3} /[\mathrm{e} \quad-1]
$$ ($\mathrm{mW} / \mathrm{m}^{2} /$ ster $/ \mathrm{cm}^{-1}$)

$v($ max in $\mathrm{cm}-1)=1.95 \mathrm{~T}$
$\mathrm{B}\left(v_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{* *} 3$.
∞
$\mathrm{E}=\pi \int \mathrm{B}(v, \mathrm{~T}) \mathrm{d} v=\sigma \mathrm{T}^{4}$, 0
$T=c_{2} v /\left[\ln \left(\frac{c_{1} v^{3}}{B_{v}}+1\right)\right]$

Using wavelengths

$$
\mathrm{c}_{2} / \lambda \mathrm{T}
$$

$\mathrm{B}(\lambda, \mathrm{T})=\mathrm{c}_{1} /\left\{\lambda^{5}\left[\begin{array}{ll}\mathrm{e} & -1]\end{array}\right\}\right.$ ($\mathrm{mW} / \mathrm{m}^{2} /$ ster $/ \mu \mathrm{m}$)
$\lambda($ max in cm$) \mathrm{T}=0.2897$
$\mathrm{B}\left(\lambda_{\max }, \mathrm{T}\right) \sim \mathrm{T}^{* * 5}$.

$\mathrm{T}=\mathrm{c}_{2} /\left[\lambda \ln \left(\frac{\mathrm{c}_{1}}{\lambda^{5} \mathrm{~B}_{\lambda}}+1\right)\right]$

Temperature sensitivity, or the percentage change in radiance corresponding to a percentage change in temperature, α, is defined as

$$
\mathrm{dB} / \mathrm{B}=\alpha \mathrm{dT} / \mathrm{T} .
$$

The temperature sensivity indicates the power to which the Planck radiance depends on temperature, since B proportional to T^{α} satisfies the equation. For infrared wavelengths,

$$
\alpha=\mathrm{c}_{2} v / \mathrm{T}=\mathrm{c}_{2} / \lambda \mathrm{T} .
$$

Wavenumber	Typical Scene Temperature	Temperatur Sensitivity
700	220	4.58
900	300	4.32
1200	300	5.76
1600	240	9.59
2300	220	15.04
2500	300	11.99

$\mathrm{dB} / \mathrm{B}=\alpha \mathrm{dT} / \mathrm{T}$ or $\mathrm{B}=\mathrm{c} \mathrm{T}^{\alpha}$ where $\alpha=\mathrm{c} 2 / \lambda \mathrm{T}$ for a small temperature window around T .

$$
\mathrm{B}=\mathrm{B}\left(\mathrm{~T}_{0}\right)+(\mathrm{dB} / \mathrm{dT})_{0}(\Delta \mathrm{~T})+\left(\mathrm{d}^{2} \mathrm{~B} / \mathrm{dT}^{2}\right)_{0}(\Delta \mathrm{~T})^{2}+\mathrm{O}(3)
$$

So to first order
$\mathrm{c}\left(\mathrm{T}_{0}+\Delta \mathrm{T}\right)^{\alpha}=\mathrm{c} \mathrm{T}_{0}{ }^{\alpha}+\mathrm{c} \alpha \mathrm{T}_{0}{ }^{\alpha-1}(\Delta \mathrm{~T})$
$\mathrm{c}\left(\mathrm{T}_{0}+\Delta \mathrm{T}\right)^{\alpha}-\mathrm{c} \mathrm{T}_{0}{ }^{\alpha}=\mathrm{c} \alpha \mathrm{T}_{0}{ }^{\alpha-1}(\Delta \mathrm{~T})$
$\Delta \mathrm{B}=\mathrm{c} \alpha \mathrm{T}_{0}{ }^{\alpha-1}(\Delta \mathrm{~T})$
$\Delta \mathrm{B} / \mathrm{B}=\alpha \Delta \mathrm{T} / \mathrm{T}$
Also to first order

$$
\left(\mathrm{T}_{0}+\Delta \mathrm{T}\right)^{\alpha}=\mathrm{T}_{0}{ }^{\alpha}+\alpha \mathrm{T}_{0}^{\alpha-1}(\Delta \mathrm{~T})
$$

Temperature Sensitivity of $B(\lambda, T)$ for typical earth scene temperatures

C Wavelength C Wavenumber
C Unnormalized
C Normalized
Wave Min
1.00
Wave Max
300.00
Temp (K)
200.00
New Plot
Add Plot
Save JPEG

$B(10 u m, T) / B(10 u m, 273) \propto T^{4}$

$B(10$ um, 273$)=6.1$
$B(10$ um,200 $)=0.9 \rightarrow 0.15$
$B(10 u m, 220)=1.7 \rightarrow 0.28$
$B(10$ um,240 $)=3.0 \rightarrow 0.49$
$B(10$ um,260 $)=4.7 \rightarrow 0.77$
$B(10$ um,280 $)=7.0 \rightarrow 1.15$
$B(10$ um,273 $)=9.9 \rightarrow 1.62$

$B(4 u m, T) / B(4 u m, 273) \propto T^{12}$

$B(4 \mathrm{um}, 273)=2.2 \times 10^{-1}$ $B(4$ um,200 $)=1.8 \times 10^{-3} \rightarrow 0.0$ $B(4$ um,220 $)=9.2 \times 10^{-3} \rightarrow 0.0$ $B(4$ um,240 $)=3.6 \times 10^{-2} \rightarrow 0.2$ $B(4$ um,260 $)=1.1 \times 10^{-1} \rightarrow 0.5$ $B(4$ um,280 $)=3.0 \times 10^{-1} \rightarrow 1.4$ $B(4$ um,273 $)=7.2 \times 10^{-1} \rightarrow 3.3$

$B(0.3 \mathrm{~cm}, \mathrm{~T}) / \mathrm{B}(0.3 \mathrm{~cm}, 273) \propto \mathrm{T}$

$\mathrm{B}(0.3 \mathrm{~cm}, 273)=2.55 \times 10^{-4}$
$B(0.3 \mathrm{~cm}, 200)=1.8 \rightarrow 0.7$
$B(0.3 \mathrm{~cm}, 220)=2.0 \rightarrow 0.78$
$\mathrm{B}(0.3 \mathrm{~cm}, 240)=2.2 \rightarrow 0.86$
$B(0.3 \mathrm{~cm}, 260)=2.4 \rightarrow 0.94$
$B(0.3 \mathrm{~cm}, 280)=2.6 \rightarrow 1.02$
$B(0.3 \mathrm{~cm}, 273)=2.8 \rightarrow 1.1$

Radiation is governed by Planck's Law

$$
\mathbf{B}(\lambda, T)=\mathrm{c}_{1} /\left\{\lambda^{5}\left[\mathrm{e}^{\mathrm{c}_{2} / \lambda \mathrm{T}}-1\right]\right\}
$$

In microwave region $c_{2} / \lambda T \ll 1$ so that

$$
\mathrm{e}^{\mathrm{c}_{2} / \lambda T}=1+\mathrm{c}_{2} / \lambda T+\text { second order }
$$

And classical Rayleigh Jeans radiation equation emerges

$$
\mathbf{B}_{\lambda}(\mathbf{T}) \approx\left[\mathbf{c}_{1} / \mathbf{c}_{2}\right]\left[\mathbf{T} / \lambda^{4}\right]
$$

Radiance is linear function of brightness temperature.

Band: 20 * wavelength 3.80 $\mu \mathrm{m}$

Cloud edges and broken clouds appear different in 11 and 4 um images.
$\mathrm{T}(11)^{* *} 4=(1-\mathrm{N}) * \operatorname{Tclr}^{* *} 4+\mathrm{N}^{*} \mathrm{Tcld}^{* *} 4 \sim(1-\mathrm{N}) * 300^{* *} 4+\mathrm{N}^{*} 200^{* *} 4$ $\mathrm{T}(4)^{* *} 12=(1-\mathrm{N}) * \operatorname{Tclr}^{* *} 12+\mathrm{N}^{*} \operatorname{Tcld}^{*} * 12 \sim(1-\mathrm{N})^{*} 300^{* *} 12+\mathrm{N}^{*} 200^{* *} 12$

Cold part of pixel has more influence for $\mathrm{B}(11)$ than $\mathrm{B}(4)$

Table 6.1 Longwave and Shortwave Window Planck Radiances ($\mathrm{mW} / \mathrm{m}^{* *} 2 / \mathrm{ster} / \mathrm{cm}-1$) and Brightness Temperatures (degrees K) as a function of Fractional Cloud Amount (for cloud of 220 K and surface of 300 K) using $\mathrm{B}(\mathrm{T})=(1-\mathrm{N})^{\star} \mathrm{B}\left(\mathrm{T}_{\text {sfc }}\right)+\mathrm{N}^{*} \mathrm{~B}\left(\mathrm{~T}_{\text {cld }}\right)$.

Cloud Fraction N	Longwave Window Rad		Shortwave Window Rad		$\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{1}$
	23.5	220	.005	220	0
.8	42.0	244	.114	267	23
.6	60.5	261	.223	280	19
.4	79.0	276	.332	289	13
.2	97.5	289	.441	295	6
.0	116.0	300	.550	300	0

SW and LW BTs for different cloud amounts
T when Tcld=220 and Tsfc=300

$8.6-11 \underbrace{\mathrm{~N}=1.0}_{\mathrm{N}=0}$

$$
11-12
$$

Broken clouds appear different in $8.6,11$ and 12 um images; assume $\mathrm{Tclr}=300$ and $\mathrm{Tcld}=230$

$$
\begin{aligned}
\mathrm{T}(11)-\mathrm{T}(12)= & {[(1-\mathrm{N}) * \mathrm{~B} 11(\mathrm{Tclr})+\mathrm{N} * \mathrm{~B} 11(\text { Tcld })]^{-1} } \\
& -[(1-\mathrm{N}) * \mathrm{~B} 12(\mathrm{Tclr})+\mathrm{N} * \mathrm{~B} 12(\text { Tcld })]^{-1} \\
\mathrm{~T}(8.6)-\mathrm{T}(11)= & {[(1-\mathrm{N}) * \mathrm{~B} 8.6(\text { Tclr })+\mathrm{N} * \mathrm{~B} 8.6(\text { Tcld })]^{-1} } \\
& -[(1-\mathrm{N}) * \mathrm{~B} 11(\mathrm{Tclr})+\mathrm{N} * \mathrm{~B} 11(\text { Tcld })]^{-1}
\end{aligned}
$$

Cold part of pixel has more influence at longer wavelengths

Cold clouds appear grainy in 4 um MODIS images.
$\Delta \mathrm{R}=\mathrm{Rmax} / 2^{13}$ and $\Delta \mathrm{T}=\Delta \mathrm{R} /[\mathrm{dB} / \mathrm{dT}]$
$\mathrm{dB} / \mathrm{dT}(4)$ is 100 times smaller at 200 K than at 300 K ;
Truncation error in cold scenes for $4 \mu \mathrm{~m}$ is several degrees K !
$\mathrm{dB} / \mathrm{dT}(11)$ is only 4 times smaller (hence it is not noticeable).

Band: 31 wavelength 11.00
$\mu \mathrm{m}$

Band: \square 22 wavelength \square 3.97 $\mu \mathrm{m}$

NEDR vs NEDT at 4 and $11 \mu \mathrm{~m}$

B and $\mathrm{dB} / \mathrm{dT}$ at 4 and $11 \mu \mathrm{~m}$

2, temp, r,drdt	
sad $=\mathrm{mW} / \mathrm{ster} / \mathrm{m} 2 / \mathrm{cm}-1$	
4	200
4	210
4	220
4	230
4	240
4	250
4	260
4	270
4	280
4	290
4	300
4	310
4	320
4	330
4	350
4	360
4	370
4	380
4	390
4	400

$2.87612 \mathrm{E}-03$	$2.586404 \mathrm{E}-04$
$6.77262 \mathrm{E}-03$	$5.524178 \mathrm{E}-04$
$1.475345 \mathrm{E}-02$	$1.096472 \mathrm{E}-03$
$3.003489 \mathrm{E}-02$	$2.042302 \mathrm{E}-03$
$5.762783 \mathrm{E}-02$	$3.598814 \mathrm{E}-03$
.1049535	$6.040413 \mathrm{E}-03$
.1825299	$9.712637 \mathrm{E}-03$
.3046972	$1.503457 \mathrm{E}-02$
-4903518	$2.249792 \mathrm{E}-02$
-7636536	$3.266267 \mathrm{E}-02$
1.154674	$4.614974 \mathrm{E}-02$
1.699957	$6.363091 \mathrm{E}-02$
2.442974	$8.581714 \mathrm{E}-02$
3.434435	-1134449
4.732509	-1472632
6.402821	-1880181
8.518434	-2364417
11.15956	-2932373
14.41332	-3590706
18.37315	-.4345571
23.13851	-5202583

w, temp, r^{*}, drdt

11	200	12.94316	. 4238625
11	210	17.68172	. 5254846
11	220	23.48358	. 6363174
11	230	30.43456	. 755097
11	240	38.60766	. 8805164
11	250	48.06268	1.011279
11	260	58.84691	1.146147
11	270	70.99543	1.28396
11	280	84.53237	1.423662
11	290	99.4718	1.564306
11	300	115.8188	1.705055
11	310	133.5708	1.845184
11	320	152.7184	1.984071
11	330	173.2464	2.121195
11	340	195.1349	2.256122
11	350	218.3603	2.388497
11	360	242.8955	2.518038
11	370	268.7109	2.644525
11	380	295.7752	2.767794
11	390	324.0556	2.887726
11	400	353.5183	3.004245

For GOES

with 10 bit data it is even worse $\Delta \mathrm{R}=\mathrm{Rmax} / 2^{10}$ and
$\Delta \mathrm{T}=\Delta \mathrm{R} /[\mathrm{dB} / \mathrm{dT}]$

Lat $=13.931$ Lon $=-80.815$

