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ON SOME EQUATIONS INVOLVING EULER TOTIENT FUNCTION

MOHAMED LOTFI

Abstract. We prove that if n is a solution to the equation s(n) = ϕ(n), where s(n)

is the sum of the proper divisors of n and ϕ(n) is Euler Totient function, then n is

either 2 or an odd square. For a solution n that is an odd square, we show that the

number of its distinct prime divisors is greater than 2 and
∏
p|n

p

p− 1
> φ, p is prime

and φ is the golden ratio. Finally, we prove that the only solutions to the equation

d(n) = ϕ(n), where d(n) is the number of divisors of n, are 1, 3, 8, 10, 18, 24, 30.

1. Introduction

Different functions in Number Theory have been extensively studied during the last

two centuries. Among the most famous of these functions are Euler Totient function

ϕ(n), the number of divisors function d(n) and the sum of proper divisors function s(n).

In this paper, we will investigate the positive integer solutions to the two equations

ϕ(n) = d(n) (1)

and

ϕ(n) = s(n) (2)

1.1. Definitions. Given n = pα1
1 pα2

2 ... pαk
k , where pi are distinct primes and αi are

positive integers for all 1 ≤ i ≤ k, k is a nonnegative integer.

We provide some definitions that are necessary for the rest of the paper:

Function I: Euler Totient Function ϕ(n).

ϕ : N → N equals the number of positive integers smaller than or equal to n that

are relatively prime to n

ϕ(n) = n (1− 1

p1
) (1− 1

p2
) ... (1− 1

pk
)

which is equivalent to
1
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ϕ(n) = pα1−1
1 pα2−1

2 ... pαk−1
k (p1 − 1)(p2 − 1) ... (pk − 1)

We will use the second definition for the rest of the paper.

Examples: ϕ(4) = 2 , ϕ(5) = 4 and ϕ(6) = 2

Function II: Number of divisors Function d(n).

d : N → N equals the number of positive integers greater than or equal to 1 that

divides n (including n itself), and

d(n) = (α1 + 1)(α2 + 1)...(αk + 1)

Examples: d(4) = 3 , d(5) = 2 and d(6) = 4

Function III: Sum of divisors Function σ(n).

σ : N → N equals the sum of positive divisors of n (including n).

σ(n) = (1 + p1 + p21 + ...+ pα1
1 )(1 + p2 + p22 + ...+ pα2

2 ) ... (1 + pk + p2k + ...+ pαk
k )

Examples: σ(4) = 7 , σ(5) = 6 and σ(6) = 12

Function IV: Sum of proper divisors Function s(n).

s : N → N equals the sum of proper divisors of n (i.e. the divisors of n excluding n

itself).

s(n) = σ(n)− n

Therefore, s(n) =

(1+ p1 + p21 + ...+ pα1
1 )(1 + p2 + p22 + ...+ pα2

2 )...(1 + pk + p2k + ...+ pαk
k )− pα1

1 pα2
2 ... pαk

k

Examples: s(4) = 3 , s(5) = 1 and s(6) = 6

All the previous functions are multiplicative, except for s(n). For more information

and additional results we refer the reader to [1] and [2].
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2. The Main Results

We begin by considering equation (1).

As s(1) = 0 < 1 = ϕ(1), we consider only the possible solutions > 1.

Proposition 2.1. Of the positive integer solutions that belongs to one of the following

classes:

(i) even integers

(ii) odd integers whose prime factorization contains a prime with odd power

(iii) integers of the form p2α such that p is an odd prime

(iv) integers of the form p2αq2β such that p and q are distinct odd primes

n = 2 is the only solution to equation (1).

We will prove that Class (i) yields only one solution, namely n = 2, and the rest of

the classes yields no solutions.

Class (i): Let n = 2m for some positive integer m. Note that both 1 and m divides

n. If m > 1, then

s(n) ≥ m+ 1

On the other hand, half of the numbers between 1 and n inclusively are even. Hence,

at least half of them are not co-prime with n. So

ϕ(n) ≤ m

Therefore, for n > 2,

s(n) > ϕ(n)

But note that

s(2) = 1 = ϕ(2)

Therefore, if n is even, then 2 is the only solution to equation (1), as desired.

Class (ii):
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Let n be an odd positive integer > 1 whose prime factorization is

pα1
1 pα2

2 ... pαk
k ,

where pi are odd primes for all i, 1 ≤ i ≤ k

We will prove that if there exists j such that αj is odd, then

s(n) ̸= ϕ(n)

Recall that

ϕ(n) = pα1−1
1 pα2−1

2 ... pαk−1
k (p1 − 1)(p2 − 1) ... (pk − 1)

As n is odd > 1, then all of its prime divisors are odd, including p1. Therefore

(p1 − 1) is even, which implies that ϕ(n) is even. Recall that

σ(n) = (1 + p1 + p21 + ...+ pα1
1 )(1 + p2 + p22 + ...+ pα2

2 ) ... (1 + pk + p2k + ...+ pαk
k )

Note that if α1 is odd, then

(1 + p1 + ...+ pα1
1 )

is even, as it is a sum of an even number of odd numbers.

This implies that σ(n) is also even. But

s(n) = σ(n)− n

Hence, s(n) is odd. Therefore, s(n) and ϕ(n) have different parities, which implies that

s(n) ̸= ϕ(n)

as claimed.

Class (iii): Let n = p2α, where p is an odd prime and α is a positive integer. Using

the formulas of ϕ(n) and s(n),

ϕ(n) = p2α − p2α−1 and s(n) = σ(n)− n = 1 + p+ ...+ p2α−1

As p ≥ 3,

p2α − p2α−1 ≥ 3p2α−1 − p2α−1 = 2p2α−1

Now, if 2p2α−1 > 1 + p + ... + p2α−1, then ϕ(n) > s(n) and we are done. Thus it

suffices to show that

2p2α−1 > 1 + p+ ...+ p2α−1
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The above inequality can be rewritten as

p2α−1 > 1 + p+ ...+ p2α−2 =
p2α−1 − 1

p− 1

As p− 1 > 1 (because p is odd prime),

p2α−1 − 1

p− 1
< p2α−1 − 1 < p2α−1,

as desired.

To prove our claim about Class (iv), we have to develop some machinery.

Lemma I. Let n = p2α1
1 p2α2

2 ... p2αk
k , for distinct primes pi, i = 1 , 2 , ... , k. If

p1 p2 ... pk
(p1 − 1)(p2 − 1)...(pk − 1)

<
1 +

√
5

2
,

then s(n) < ϕ(n).

Proof. Consider the inequality

p2α1+1
1 p2α2+1

2 ... p2αk+1
k

(p1 − 1)(p2 − 1) ... (pk − 1)
− p2α1

1 p2α2
2 ... p2αk

k < p2α1 − 1
1 p2α2 − 1

2 ... p2αk − 1
k (p1− 1)(p2− 1) ... (pk − 1)

which we will call inequality (*).

Dividing both sides of the inequality by the RHS yields

p21 p
2
2 ... p

2
k

(p1 − 1)2(p2 − 1)2 ... (pk − 1)2
− p1 p2 ... pk

(p1 − 1)(p2 − 1) ... (pk − 1)
< 1

Let x =
p1 p2 ... pk

(p1 − 1)(p2 − 1) ... (pk − 1)
. The inequality becomes

x2 − x < 1

or

x2 − x −1 < 0

Solving this inequality yields

x ∈

(
1−

√
5

2
,
1 +

√
5

2

)
or, equivalently,
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p1 p2 ... pk
(p1 − 1)(p2 − 1) ... (pk − 1)

∈

(
1−

√
5

2
,
1 +

√
5

2

)

As the
p1 p2 ... pk

(p1 − 1)(p2 − 1) ... (pk − 1)
> 0,

then if
p1 p2 ... pk

(p1 − 1)(p2 − 1) ... (pk − 1)
<

1 +
√
5

2
, the inequality (*) holds.

But s(n) =

(1+ p1+ p21+ ...+ p2α1
1 )(1+ p2+p22+ ...+ p2α2

2 ) ... (1+ pk+p2k + ...+ p2αk
k )− p2α1

1 p2α2
2 ... p2αk

k

=
(p2α1+1

1 − 1)(p2α2+1
2 − 1) ... (p2αk+1

k − 1)

(p1 − 1)(p2 − 1) ... (pk − 1)
− p2α1

1 p2α2
2 ... p2αk

k

<
p2α1+1
1 p2α2+1

2 ... p2αk+1
k

(p1 − 1)(p2 − 1) ... (pk − 1)
− p2α1

1 p2α2
2 ... p2αk

k

< p2α1 − 1
1 p2α2 − 1

2 ... p2αk − 1
k (p1 − 1)(p2 − 1) ... (pk − 1)

= ϕ(n), as claimed.

□

Corollary 2.2. Given any positive number k > 1, there exists a prime P such that if

n is an odd prime with k divisors and all the prime divisors of n are greater than or

equal to P then s(n) < ϕ(n)

Proof. Denote by pn the nth prime number. Since the sequence (pn) increases to +∞,

the sequence an =
pn

pn − 1
is strictly decreasing and convergent to 1.

As

(
1 +

√
5

2

)1/k

> 1, one can find pi1 < pi2 < ... pik such that

pik
pik − 1

< ... <
pi2

pi2 − 1
<

pi1
pi1 − 1

<

(
1 +

√
5

2

)1/k

Thus, (
pi1

pi1 − 1

) (
pi2

pi2 − 1

)
...

(
pik

pik − 1

)
<

1 +
√
5

2
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Let P = pi1 and n = p
2αi1
i1

p
2αi2
i2

... p
2αik
ik

. Then by Lemma I,

s(n) < ϕ(n)

as desired. □

We will need the following elementary inequality

n

n− 1
>

m

m− 1

for integers m > n > 1 . Denote it by inequality (**).

Now we can finish the proof of Class (iv).

Let n = p2αq2β such that p and q are distinct odd primes with p < q. So

ϕ(n) = p2α−1q2β−1(p− 1)(q − 1)

and

s(n) = σ(n)−n = (1+ p+ ...+ p2α)(1+ q+ ...+ q2β) =
(p2α+1 − 1)(q2β+1 − 1)

(p− 1)(q − 1)
− p2αq2β

There are two cases:

Case I: p ≥ 5

Then,
pq

(p− 1)(q − 1)
<

(5)(7)

(4)(6)
=

35

24

by inequality (**).

As
35

24
<

1 +
√
5

2
, then by Lemma I

s(n) < ϕ(n)

Hence,

s(n) ̸= ϕ(n)

Case II: p = 3

if q ≥ 17, then

pq

(p− 1)(q − 1)
<

(3)(17)

(2)(16)
=

51

32
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again by inequality (**)

But
51

32
<

1 +
√
5

2
. Thus, by Lemma I, s(n) < ϕ(n)

Upon checking the pairs (p, q) = (3, 5), (3, 7), (3, 11), (3, 13), it turns out that none

of them provides a solution to

s(n) = ϕ(n)

By combining the two cases, it follows that no solution belongs to the Class (iv), as

claimed.

After considering all of the four classes, we can conclude that if the equation

s(n) = ϕ(n)

has a solution greater than 2, it must be an odd square such that the number of its

distinct prime divisors is greater than 2 and
∏
p|n

p

p− 1
> φ, where p is prime and φ is

the famous golden ratio =
1 +

√
5

2
.

Remark 2.3. Lemma I provides a quick way to check if s(n) < ϕ(n) for square odd n,

and, surprisingly, this method depends only on the prime factors, not on their powers

(provided of course they are even).

We continue this section with equation (2).

Proposition 2.4. The only solutions to the equation

d(n) = ϕ(n)

are 1, 3, 8, 10, 18, 24, 30

The solution n = 1 is trivial, so assume that n > 1. We will prove some lemmas that

will help us in proving the proposition. For the rest of the paper, let α be a positive

integer, unless stated otherwise.
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Lemma II: If p is a prime ≥ 5, then ϕ(pα) > d(pα) (i.e pα−1(p− 1) > α + 1).

Proof. Note that pα−1(p−1) ≥ 5α−1 ·4. We will prove by induction that 5α−1 ·4 > α+1

Base Case (α = 1): 4 > 1 + 1

Induction hypotheses: assume that 5k−1 · 4 > k + 1

So

5(5k−1 · 4) > 5(k + 1) > (k + 1) + 1

Hence,

5k+1 · 4 > (k + 1) + 1

completing the induction.

We conclude that

pα−1(p− 1) ≥ 5α−1 · 4 > α + 1 for all α and prime p ≥ 5, as desired.

□

Lemma III:

(i) ϕ(3α) = d(3α) if α = 1 (i.e. 2 · 30 = 2 )

(ii) ϕ(3α) > d(3α) if α > 1 (i.e. 2 · 3α−1 > α + 1 )

Proof. (i) is a direct substitution. We will prove (ii) by induction on α (starting from

α = 2).

Obviously, (α = 2): 6 > 3

Assume that 2 · 3k−1 > k + 1, for some positive integer k ≥ 2. So

3(2 · 3k−1) > 3(k + 1) > k + 2

Thus,

2 · 3k > k + 2

Induction is complete, and the lemma is proved. □

Lemma IV:

(i) ϕ(2α) < d(2α) if α = 1 or 2

(ii) ϕ(2α) = d(2α) if α = 3



10 MOHAMED LOTFI

(iii) ϕ(2α) > d(2α) if α > 3 (i.e. 2α−1 > α + 1 )

Proof. (i) and (ii) are direct substitution. As we did with Lemmas II and III, we will

prove (iii) by induction on α (starting from α = 4)

Base case (α = 2): 8 > 5, which is true.

Assume that 2k−1 > k + 1, for some positive integer k ≥ 4. So

2k = 2(2k−1) > 2(k + 1) > k + 2

concluding the induction. □

Lemma V: For every p > 3, then ϕ(pα) ≥ 2d(pα), with equality holds if and only

if p = 5 and α = 1.

Proof. We will prove by induction on α (starting from α = 2) that 5α−1 · 4 > 2(α+ 1)

Obviously, 51 · 4 > 6

Assume that 5k−1 · 4 > 2(k + 1), for some k ≥ 2. Then

5(5k−1 · 4) > 10(k + 1) > 2(k + 2),

finishing the induction.

As a result,

ϕ(pα) = pα−1(p− 1) ≥ 5α−1 · 4 > 2(α + 1) = 2d(pα) for k ≥ 2.

Thus, the equality in Lemma V holds if and only if p = 5 and α = 1.

□

Lemma VI: For any α ≥ 2, ϕ(3α) ≥ 2d(3α), with equality holds if and only if

α = 2

Proof. Again, we will prove it by induction on α (starting from α = 3) that

3α−1 · 2 > 2(α + 1)

Base Case: 32 · 2 > 8
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Assume that 3k−1 · 2 > 2(k + 1), for some k ≥ 3

Then,

3(3k−1 · 2) > 6(k + 1) > 2(k + 2)

So

3k · 2 > 2(k + 2)

finishing the induction.

Therefore, for α ≥ 3.

ϕ(3α) = 3α−1 · 2 > 2(α + 1) = 2d(3α)

Thus, the equality in the Lemma holds if and only if α ≥ 2, as claimed. □

We will use the lemmas to prove the Proposition. Let n = pα1
1 pα2

2 ... pαk
k , where pi

are distinct primes for 1 ≤ i ≤ k, with p1 is the smallest prime, and αi is a positive

integer for 1 ≤ i ≤ k. There are three cases to consider:

First: If p1 > 3, no solution exists.

Proof: ϕ(n) =

ϕ(pα1
1 ) ϕ(pα2

2 ) ... ϕ(pαk
k ) (as ϕ(n) is a multiplicative function)

> d(pα1
1 ) d(pα2

2 ) ... d(pαk
k ) (Lemma II)

= d(n) (d(n) is multiplicative)

Hence, no solution exists, as claimed.

Second: If p1 = 3, then n = 3 is the only solution.

Proof: There are two subcases:

Subcase I: the number of distinct primes that divides n is greater than 1 (i.e k ̸= 1)

By Lemma III: ϕ(3α1) ≥ d(3α1)

By Lemma II: ϕ(pα2
2 ) ... ϕ(pαk

k ) > d(pα2
2 ) ... d(pαk

k )

Combining the previous statements, we conclude that

ϕ(n) = ϕ(3α1) ϕ(pα2
2 ) ... ϕ(pαk

k ) > d(3α1) d(pα2
2 ) ... d(pαk

k ) = d(n)

Therefore, no solution exists.
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Subcase II: the number of distinct primes that divides n is 1. Thus, n = 3α1 .

By Lemma III, α1 must be 1. n = 3 works, as claimed.

Third: If p1 = 2, then there are four subcases to consider, based on the value of α1.

Subcase I: α1 > 3 Then,

ϕ(n) = ϕ(2α1) ϕ(pα2
2 ) ... ϕ(pαk

k ) > d(2α1) d(pα2
2 ) ... d(pαk

k ) = d(n)

by Lemmas II, III and IV. No solution exists.

Subcase II: α1 = 3.

If there is a prime number greater than 3 that divides n, then, again,

ϕ(n) = ϕ(2α1) ϕ(pα2
2 ) ... ϕ(pαk

k ) > d(2α1) d(pα2
2 ) ... d(pαk

k ) = d(n)

by Lemmas II, III and IV. No solution exists.

Therefore, we can limit our investigation to the cases n = 23 and 23 · 3α2 .

Note that ϕ(23) = d(23), so 8 is a solution. By Lemma III,

ϕ(3α2) ≥ d(3α2)

It follows that

ϕ(23 · 3α2) = ϕ(23)ϕ(3α2) ≥ d(23)d(3α2) = d(23 · 3α2)

by Lemmas III and IV. Equality holds if and only if α2 = 1. Indeed, ϕ(24) = d(24).

So 24 is a solution.

Subcase III: α1 = 2

Let n = 22 ·m, where m is not divisible by 2. So

ϕ(n) = ϕ(22 ·m) = ϕ(22)ϕ(m) = 2ϕ(m)

Similarly,

d(n) = d(22 ·m) = d(22)d(m) = 3d(m)

So our goal is to find the solutions of

2ϕ(m) = 3d(m)
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If m is divisible by a prime > 3, let m = pα2
2 pα3

3 ...pαk
k with, pj > 3 for some j,

2 ≤ j ≤ k .

We claim that 2ϕ(m) > 3d(m). Note that

ϕ(m) = ϕ(pα2
2 ) ... ϕ(p

αj

j ) ... ϕ(pαk
k )

≥ d(pα2
2 ) ... 2d(pα3

3 ) ... d(pαk
k ) (Lemmas III and V )

>
3

2
d(pα2

2 ) d(pα3
3 ) ... d(pαk

k )

=
3

2
d(m)

Thus, ϕ(m) >
3

2
d(m), which is our claim.Therem must be equal to 3α, for some posi-

tive integer α.

Note that if α ≥ 2, then by Lemma VI,

ϕ(m) ≥ 2d(m) >
3

2
d(m)

Hence, α = 1. However, n = 22 · 3 does not satisfy the equation ϕ(n) = d(n). Thus,

this subcase yields no solutions.

Subcase IV: α1 = 1.

Let n = 2m, where m is odd. So

ϕ(n) = ϕ(2m) = ϕ(2)ϕ(m) = ϕ(m)

Similarly,

d(n) = d(2m) = d(2)d(m) = 2d(m)

Our goal is to solve ϕ(m) = 2d(m).

Again, if m is divisible a prime > 3, let m = pα2
2 pα3

3 ...pαk
k , with pj > 3. Then by

Lemmas III and V,

ϕ(m) = ϕ(pα2
2 ) ... ϕ(p

αj

j ) ... ϕ(pαk
k )

≥ d(pα2
2 ) ... 2d(p

αj

j ) ... d(pαk
k )

= 2d(m)

The equality holds only if the greatest prime that divides m is 5. Otherwise, by

Lemma V, the inequality will be strict. Also, the power of 5 must be 1 (Lemma V

again).
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This leaves us with two possibilities: m = 3α2 · 5, for some positive integer α2,

or m = 5.

Let m = 3α2 · 5. Note that for α2 ≥ 2,

ϕ(m) = ϕ(3α2 · 5) = ϕ(3α2) ϕ(5)

≥ 2 · 2d(3α2) d(5) (Lemma VI and ϕ(5) = 2d(5))

= 4d(3α2) d(5) = 4d(3α2 · 5) = 4d(m) > d(m).

Thus, we are left with only two possible solutions m = 31 · 5 or 5.

By checking these values, we know that they actually work, giving the solutions:

n = 2 · 3 · 5 and n = 2 · 5

Finally, we consider m = 3α2 , for some positive integer α2. If α2 > 2, by Lemma VI,

ϕ(3α2) > 2d(3α2)

So m = 3 or 32. By checking, only m = 32 works. So n = 2 · 32 is a solution.

Having considered all the possible cases, we can conclude that the only solutions to

the equation ϕ(n) = d(n) are n = 1, 3, 8, 10, 18, 24, 30. (Q.E.D)
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