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Abstract

A semidiscrete curve-shortening flow continuously deforms a polygon in the direc-
tion of an inward normal until it shrinks to a point. We are interested in the long-time
behavior of polygons under such flows. Is there a semidiscrete flow under which all
polygons become asymptotically regular? This is an open question, but we provide nu-
merical evidence to suggest that the recent β-polygon flow of Glickenstein and Liang
produces regular polygons. It is known that triangles become regular under the β-
polygon flow. Using a rescaled flow in which a regular polygon is a fixed point, we note
how side lengths and angles evolve under the β-polygon flow and conjecture that all
quadrilaterals become rhombic and polygons with more than 5 vertices become regular.

1 Introduction

In differential geometry, the curve-shortening flow is a geometric flow that continuously
deforms simple, closed curves in R2 by pushing in the direction of an inner-normal vector.
The Gage-Hamilton-Grayson Theorem says that in finite time the curve-shortening flow
shrinks closed plane curves to round points. In other words, curves asymptotically look like
circles under the curve-shortening flow, demonstrated in Figure 1.

Figure 1: The curve-shortening flow shrinks plane curves to round points [1].

Analogously, semidiscrete curve-shortening flows evolve polygons along an inner-normal
vector. There is no well-defined inner-normal for polygons and so different semidiscrete
curve-shortening schemes rely on different notions of a “normal” direction.
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Figure 2: The evolution of a triangle under a semidiscrete curve-shortening flow.

The simplest semidiscrete curve-shortening flow is the one considered by Chow and Glick-
enstein, in which the evolution is defined by a linear system of differential equations [2].
Under this flow, a polygon asymptotically becomes the affine transformation of a regular
polygon, but not necessarily a regular polygon. Since the continuous curve-shortening flow
makes plane curves circular, we would like a semidiscrete flow that deforms polygons into
regular polygons, which are discrete approximations of the circle. Such a flow has not yet
been identified.

One candidate for a flow that produces regular polygons is the β-polygon flow introduced
by Glickenstein and Liang [3]. The authors prove that, under the flow, all triangles become
regular and polygons with more than 5 vertices are asymptotically stable, meaning that
there exists some neighborhood of polygons around each regular polygon that all become
asymptotically regular.

To study long-term effects of a geometric flow, it is useful to identify self-similar so-
lutions, which simply rescale themselves under a flow. Often self-similar solutions will be
asymptotically stable and a flow can be rescaled so that self-similar solutions are fixed points.
In the continuous case, the simplest example of a self-similar solution is a circle, which re-
mains circular throughout the flow. In the semidiscrete setting, self-similar solutions are
polygons that simply rescale themselves throughout the flow. Notably, all regular polygons
are self-similar solutions under the β-polygon flow.

In an effort to strengthen current results about the long-term behavior of the β-polygon
flow, we numerically estimate the trajectories of several polygons under the flow. Using
a rescaled flow in which a regular polygon is a fixed point, we apply Euler’s Method to
approximate the trajectories of different size polygons during the evolution process. In the
case of the triangle, our results illustrate the fact that all triangles become regular under
the flow. For polygons with 5 or more vertices, our evidence suggests that the flow produces
regular polygons. In the case of 4 vertices, we suspect that the flow produces rhombuses.
In other words, quadrilaterals become equilateral but not necessarily equiangular under the
flow.

1.1 Outline

This paper is laid out as follows. In Section 2 we provide a brief overview of the continuous
curve-shortening flow to motivate our discussion of semidiscrete flows. In Section 3 we define
a polygon and discuss semidiscrete flows on polygons. In Section 4 we discuss the linear
semidiscrete flow of Chow and Glickenstein [2]. In Section 5 we discuss the β-polygon flow
developed by Glickenstein and Liang [3], a generalization of the linear semidiscrete flow. In
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Section 6 we numerically compute the trajectories of different polygons under the β-polygon
flow. In Section 7 we discuss the utility of our numerical results and ideas for future work.

2 Continuous Curve-Shortening

To motivate semidiscrete curve-shortening schemes on polygons we start with a brief overview
of the continuous curve-shortening flow, which deforms plane curves.

Consider the parametrized curve X(u) : S1 → R2. The curve X is known as a plane
curve since it is an embedding of a circle into the plane. We think of the plane curve X as
being traced out over time with time parameter u. If a plane curve encloses finite area, it
is called closed and if it does not have self-intersections it is called simple. A simple, closed
plane curve is convex if it encloses a convex region of the plane.

At a point on a simple, closed plane curve, the unit inner-normal vector is the unit
vector perpendicular to the tangent vector that points into the interior of the curve. The
signed curvature at a point is a scalar that locally describes how the curve bends, with sign
determined by local concavity. (For precise derivations of these quantities, see [4].) The
curve-shortening flow deforms simple, closed plane curves at every point in the direction of
the unit inner-normal vector scaled by signed curvature, illustrated in Figure 3.

Figure 3: The direction of the deformation made by the curve-shortening flow at a point
on a curve is the unit inner-normal vector scaled by signed curvature. Curvature can be
thought of as the inverse of the radius of the osculating circle, which locally approximates
the shape of the curve.

From [5], we have the following definition of the curve-shortening flow.

Definition 1. Let X = {Xt | t ∈ [0, A)} be a family of simple, closed curves, where Xt(u) :
S1 → R2. We say X is a solution to the curve-shortening flow if

∂X

∂t
= κN, (1)

where κ is signed curvature and N is the unit inner-normal vector.
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2.1 Long-Time Behavior

The long-time behavior of the cure-shortening flow (what happens to a curve as the flow is
applied) has been understood since the 1980s. Gage and Hamilton showed that a simple,
closed, convex curve converges to a round point under the curve-shortening flow, meaning
there is a time that when the curve is as circular as we like before it vanishes [6]. In other
words, the curve becomes asymptotically circular under the flow.

Theorem 2.1 (Gage and Hamilton, 1986). If Xt(u) is a solution to the curve-shortening
flow with X0(u) a convex, closed, embedded curve in R2, then there exists a T > 0 such that
the flow exists for all t ∈ [0, T ), Xt(·) is convex for all t ∈ [0, T ), and Xt(·) converges to a
round point as t→ T−.

Grayson later showed that any closed plane curve becomes convex under the curve-shortening
flow [7].

Theorem 2.2 (Grayson, 1987). If Xt(u) is a solution to the curve-shortening flow with
X0(u) a curve embedded in R2, then there exists a T > 0 such that the flow exists in [0, T ]
and XT (u) is convex.

Together Theorems 2.1 and 2.2 establish that all simple, closed plane curves become asymp-
totically circular under the curve-shortening flow. (This is illustrated in Figure 1.) This
result is called the Gage-Hamilton-Grayson Theorem. Analogous results hold for flows on
curves in higher dimensional Euclidean space [8].

2.2 Self-Similar Solutions

A self-similar solution to the curve-shortening flow is a curve that is rescaled during the
flow.

Definition 2. Let X = {Xt | t ∈ [0, A)} be a solution to (1). We say X0 is self-similar
solution of (1) if there exists a scaling function λ(t) such that Xt = λ(t)X0 for all t ∈ [0, A).

All self-similar solutions to the continuous curve-shortening flow have been fully-classified
[9]. The circle is the simplest example.

Example 1. Consider a collection of curves X = {Xt(θ) | t ∈ [0, A)}, where Xt(θ) =
r(t)(cos(θ), sin(θ)). For each t, the curve Xt(θ) has curvature κ = 1

r(t)
and unit normal

vector N = (− cos(θ),− sin(θ)).
Taking X to be a solution to the curve-shortening flow (1),

r′(t)(cos(θ), sin(θ)) =
1

r(t)
(− cos(θ), − sin(θ)).

Hence, r′(t) = −1
r(t)

and so r(t) =
√
−2t+ r(0)2. Under the curve-shortening flow, the curve

X0(θ) shrinks to a circular point. If we set r = 0 we find that the curve becomes a point at
time t = 1

2
r(0)2. One interpretation of this result is that if a solution to curve-shortening

flow is a circle at some time during the flow, then it is always a circle under the flow.

In general, self-similar solutions of a geometric flow are useful because they can be made
fixed-points of a flow to create rescaled flows in which curves do not vanish. This makes it
easier to study the asymptotic behavior of curves under a particular flow.
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2.3 Extensions

Extensions of the curve-shortening flow include mean curvature flow, which deforms curves
in the more general context of Riemannian manifolds, and Ricci flow, which evolves metrics
on surfaces [5]. Applications of the curve-shortening flow include isoparametric inequalities
[10], robotics [11] and computer vision [12].

Curve-shortening theory for plane curves has been developed over several decades, but
as we will see in the next section, fully-analogous results for evolving polygons have not yet
been established.

3 Polygons and Curve-Shortening

The focus of this paper is on discrete analogues of the curve-shortening flow that continu-
ously evolve polygons. We call such processes semidiscrete curve-shortening flows since they
apply a continuous flow to discrete polygons. There also exist fully-discrete curve-shortening
schemes which use an updating rule rather than a differential equation to evolve polygons
[13].

3.1 Polygons

First we define what we mean by a polygon.

Definition 3. Let n ≥ 3 and p ≥ 2. A polygon (or n-gon) X is a collection of vertices
X = {X0, X1, . . . , Xn−1} in Rp.

Although a polygon is a collection of points we will also consider the line segments
X0X1, X1X2, . . . , Xn−2Xn−1, Xn−1X0 to be the edges of a polygon. Note that our definition
allows edges to intersect at points that are not vertices, like in the heptagon in Figure 4.
However, every 3-gon is a triangle in the usual sense.

Figure 4: A heptagon in R2 with interesting edges.

In the p = 2 case, we can identify a polygon in R2 with a vector in Cn, writing

X =


X0

X1
...

Xn−1

 =


x0 + y0i
x1 + y1i

...
xn−1 + yn−1i

 .
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This allows us to think of each vertex of a polygon as a point in R2 or as one imaginary
number.

3.2 Polygon Flows

As with the continuous flow, we are interested in describing the long-term behavior of
semidiscrete flows and the shapes of self-similar solutions. In the continuous case, the
curve-shortening flow shrinks all simple, closed plane curves to round points. However,
the following important question about polygon evolution is still open.

Question 3.1. Is there a semidiscrete curve-shortening flow under which all n-gons asymp-
totically approach a regular n-gon?

In Sections 4 and 5 we discuss two polygon flows in detail: the linear semidiscrete flow
and the β-polygon flow. Notably, the β-polygon flow could be a flow that produces regular
polygons. In Section 6 we compute several numerical examples which support this idea.

Other polygon flows in the literature include a scheme that approximates the continuous
curve-shortening flow [14] and another that uses the Menger curvature, which is the curvature
of the circle defined by three points [15].

4 Linear Semidiscrete Curve-Shortening

In this section we describe the semidiscrete curve-shortening flow of Chow and Glickenstein
[2]. Some of the tools developed here become useful when working with the β-polygon flow
in Section 5.

To develop a curve-shortening scheme on a polygon X we need a notion of a normal
direction in which to evolve each vertex. We define the polygonal normal at vertex Xi as

Ni = (Xj+1 −Xj) + (Xj−1 −Xj),

where indices are taken mod n. This normal can be thought of as the the fourth vertex of
the parallelogram defined by Xi−1, Xi and Xi+1, illustrated in Figure 5.

Figure 5: The polygonal normal Ni at the vertex Xi on a section of a polygon.

The semidiscrete flow simply evolves a polygon in the direction of the polygonal normal at
each vertex.
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Definition 4. A polygon X(t) satisfies the linear semidiscrete curve-shortening flow if for
j = 0, . . . , n− 1,

dXj

dt
= (Xj+1 −Xj) + (Xj−1 −Xj) = Xj−1 − 2Xj +Xj+1, (2)

where indices are taken mod n.

Since this flow is linear we can write it as the matrix equation

dX

dt
= MX,

where

M =



−2 1 0 · · · 0 1

1 −2 1 0
. . . 0

0 1 −2 1 0
...

... 0
. . . . . . . . . 0

0
. . . 0 1 −2 1

1 0 · · · 0 1 −2


. (3)

The eigenvectors and eigenvalues of the matrix M are well-understood, which allows us to
write an explicit solution for the flow. In Section 4.1 we describe properties of the matrix
M and in Section 4.2 we state a result characterizing the long-term behavior of the flow.

4.1 Matrix Properties

The matrix M is a circulant matrix. Circulant matrices take the form

A =


a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 · · · an−3 an−2
...

...
...

...
...

...
a2 a3 a4 . . . a0 a1

a1 a2 a3 . . . an−1 a0

 .

Circulant matrix theory allows us to write down the eigenvectors and eigenvalues of M . Let
ω = e2πi/n. Integer powers of ω are known as nth roots of unity since they are solutions of
the equation zn = 1. The matrix M has eigenvectors consisting of nth roots of unity.

Proposition 4.1 (Chow and Glickenstein, 2007). The matrix M has eigenvectors

Pk = (1, ωk, ω2k, . . . , ω(n−1)k)T ,

with corresponding eigenvalues
λk = −4 sin2(k/2π)

for k = 0, . . . , n− 1.
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If we plot each entry of an eigenvector of M in the complex plane and connect consecutive
entries with arrows, the result is a regular polygon or pentagram. For this reason, the
eigenvectors of M are also called eigenpolygons. Interestingly, some eigenpolygons have the
same edges, but a different orientation. For example, in the n = 3 case, the eigenvectors
P1 = (1, ω, ω2) and P2 = (1, ω2, ω4 = ω) represent the the same triangle but arrows are
reversed. For any n-gon, the eigenvector P0 = (1, 1, . . . , 1)T is represented as the point
(1, 0) and so it is considered trivial. All non-trivial eigenpolygons with counterclockwise
orientation for n = 3, . . . , 9 are shown in Figure 6.

n = 3 n = 4 n = 5

n = 6 n = 7

n = 8

n = 9

Figure 6: All non-trivial eigenpolygons up to orientation for n = 3, . . . , 9.

Furthermore, the matrix M has rank n and so the eigenpolygons P0, . . . , Pn−1 form a
basis for Cn. Thus, any polygon X in R2 can be written as

X = c0P0 + c1P1 + · · ·+ cn−1Pn−1, (4)

where c0, . . . , cn−1 are complex weights. The map Xi → ci is called the discrete Fourier
transformation and is described in [2].
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4.2 Long-Time Behavior

Using the weights c0, . . . , cn−1 from (4), the solution to the linear semidiscrete flow (2) for a
polygon X in R2 can be written as

X(t) =
n−1∑
i=0

cie
λitPi.

Using this solution, it can be shown that the flow produces affine transformations of regular
polygons. In other words, ifX asymptotically approaches Y under (2), there exists a rescaling
of Y called Y ′, an n× n matrix B and a vector b such that

Y ′ = BP1 + b.

This result is described in Theorem 4.1.

Theorem 4.1 (Chow and Glickenstein, 2007). Under the semidiscrete flow (2) in R2, every
polygon with n vertices shrinks to a point. As it shrinks to a point, it converges asymptotically
to an affine transformation of a convex regular n-gon, unless the initial polygon is orthogonal
to the convex regular n-gon.

An analogous result also holds for polygons in higher dimensions.

Theorem 4.2 (Chow and Glickenstein, 2007). Under the semidiscrete flow (2) in Rp, every
polygon with n vertices in Rp shrinks to a point and asymptotically becomes the linear image
of a convex regular n-gon in R2.

Importantly, the semidiscrete flow does not always produce regular polygons. In fact, as
noticed in [3], all triangles and quadrilaterals are affinely regular, so the space of polygons
produced by the flow is large. However, a generalization of the semidiscrete flow, called the
β-polygon flow, may deform most polygons into regular polygons. This flow is discussed in
Section 5.

5 The β-polygon Flow

The β-polygon flow, introduced by Glickenstein and Liang, generalizes the linear semidiscrete
flow by scaling the components of the polygonal normal by edge lengths [3]. We only consider
the actions of the flow on polygons in R2.

Definition 5. Let β > 0. Consider all indices mod n. For j = 0, . . . , n − 1, define lj =
|Xj+1 −Xj|. A polygon X in R2 satisfies the β-polygon flow if

dXj

dt
= lβj (Xj+1 −Xj) + lβj−1(Xj−1 −Xj). (5)

Notice that if we set β = 0, the β-polygon flow reduces to the linear semidiscrete flow (2).
The matrix form of the β-polygon flow is given by

dX

dt
= MXX,

9



where

MX =



−(lβ0 + lβn−1) lβ0 0 · · · 0 lβn−1

lβ0 −(lβ0 + lβ1 ) lβ1 0
. . . 0

0 lβ1 −(lβ1 + lβ2 ) lβ2 0
...

... 0
. . . . . . . . . 0

0
. . . 0 lβn−3 −(lβn−3 + lβn−2) lβn−2

lβn−1 0 · · · 0 lβn−2 −(lβn−2 + lβn−1)


.

The notation MX is used for the matrix equation (rather than, say, just M) since the system
of differential equations depends on the edge lengths l0, . . . , ln−1 of the specific polygon X.

5.1 Derivation

A functional is a function from a vector space to its scalar field. The β-polygon flow is
motivated by the gradient of the functional

Fα(X) =
1

α

n−1∑
j=0

|Xj+1 −Xj|α. (6)

The negative gradient of the functional F is the vector

−∇F =

〈
− ∂F

∂X0

, − ∂F

∂X1

, . . . , − ∂F

∂X0

〉
.

We can compute the ith component of −∇F as

− ∂F
∂Xi

= − 1

α

∂

∂Xi

[|Xi −Xi−1|α + |Xi+1 −Xi|α]

= − 1

α

∂

∂Xi

[(√
(Xi −Xi−1)2

)α
+
(√

(Xi+1 −Xi)2
)α]

= − 1

α

[
α(2Xi − 2Xi−1)

2|Xi −Xi−1|2−α
+
α(−2Xi+1 + 2Xi)

2|Xi+1 −Xi|2−α

]
= −

[
− (Xi−1 −Xi)

|Xi −Xi−1|2−α
− (Xi+1 −Xi)

|Xi+1 −Xi|2−α

]
= lα−2

i (Xi+1 −Xi) + lα−2
i−1 (Xi−1 −Xi). (7)

Letting β = α − 2, the flow (7) is precisely the β-polygon flow (5). We call this flow the
negative gradient flow of the functional (6). Deriving a flow from a functional in this context
makes it susceptible to tools from the calculus of variations.

5.2 Properties of the Flow

A Euclidean isometry is a distance persevering map in Euclidean space. In the plane, Eu-
clidean isometries consist of translations, rotations and reflections. Proposition 5.1 states
that the β-polygon flow is invariant under Euclidean isometries and scalar multiplication
and that the center of mass of a polygon is preserved by the flow.
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Proposition 5.1 (Glickenstein and Liang, 2016). Let X be a polygon, c > 0 and E by a
Euclidean isometry of the plane. Denote the action of E on X by XE. Then,

1. MXE = MX .

2. McX = cβMX .

3. The center of mass, 1
n

∑n−1
i=0 Xi, is preserved by the flow.

Proof. The first follows from the fact that MX only depends on edge lengths, not on vertices.
To establish the second, notice that multiplying each point in X by c has the effect of

scaling the edge lengths of X by c and so we can factor cβ out of each entry in McX to write
McX = cβMX .

Finally, notice that the row sums of MX are 0. Hence,
∑n−1

i=0
dXi
dt

= 0 and so
∑n−1

i=0 Xi(t)
is constant for all time t. Therefore, the center of mass is preserved by the flow.

5.3 Self-Similar Solutions

A self-similar solution to the β-polygon flow (5) has the same shape throughout the evolution
up to shifting and scaling.

Definition 6. We say X(t) is self-similar solution of the β-polygon flow if there exists a
polygon X0, a scaling function λ(t) and a point Q such that λ(t)X0 +Q satisfies (5).

The invariance properties in Proposition 5.1 help us establish that regular polygons are
self-similar solutions to (5). Recall that Pk is the kth eigenpolygon given in Proposition 4.1.

Theorem 5.1. The regular n-gon Pk is a self-similar solution to the β-polygon flow (5).

Proof. Let a(t) be a scaling function. As an ansatz, suppose P (t) = a(t)Pk is a solution to
the flow (5). Using the invariance properties,

dP

dt
=
da

dt
Pk = MPP = MaPk(aPk) = aβ+1MPkPk.

Since Pk is a regular polygon, all side lengths are equal, i.e. l0 = l1 = · · · = ln−1. Accordingly,
let l be the side length of Pk. Then MPk = lβM where M is the matrix (3). It follows that

aβ+1MPkPk = aβ+1lβMPk = aβ+1lβλkPk,

where λk is the eigenvalue of M corresponding to eigenvector Pk. By definition, dP
dt

= da
dt
P

and so
da

dt
= aβ+1lβλk.

This is a separable differential equation and so to solve we can integrate∫
a−β−1da =

∫
lβλkdt.

The general solution is −1
β
a−β = lβλkt+ C. With a(0) = 1, we find a(t) = (1− βlβλkt)−1/β.

Therefore, since there exists a function a(t) such that P (t) = a(t)Pk is a solution to (5), the
regular polygon Pk is a self-similar solution to the β-polygon flow.
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It follows from Theorem 5.1 that at any point during the flow a regular polygon will
always look like a regular polygon before it shrinks to a point, illustrated in Figure 7.

Figure 7: A regular nonagon shrinks self-similarly under the β-polygon flow.

5.4 Stability Results

Our goal is to characterize the shapes of polygons that are approached asymptotically under
the β-polygon flow. These “limit polygons” have not been fully-characterized, but some
stability results exist. In the case of the triangle, all limit polygons are regular.

Theorem 5.2 (Glickenstein and Liang, 2016). Under the β-polygon flow, an arbitrary (non-
degenerate) triangle shrinks to a point and converges to a regular triangle if appropriately
rescaled.

For n ≥ 5, polygons close in shape to a regular n-gon converge to a regular n-gon.

Theorem 5.3 (Glickenstein and Liang, 2016). Assume n ≥ 5. Under the β-polygon flow,
any regular n-gon shrinks to a point and is asymptotically stable in the sense that there is a
neighborhood such that the polygons in that neighborhood converge to a regular polygon under
the β-polygon flow if appropriately re-scaled.

A weaker result holds for n = 4.

Theorem 5.4 (Glickenstein and Liang, 2016). When n = 4, the shape of square is locally
stable on a 7-dimensional hypersurface under the β-polygon flow.

5.5 Rescaled Flow

In order to investigate the long-term behavior of the β-polygon flow on different polygons
we consider a rescaled version of the flow in which the regular polygon P1 is a fixed point.
In other words, the evolution equation for the rescaled flow is zero when the polygon is P1.
Instead of shrinking to a point, polygons are rescaled as they are deformed by this flow and
so we can observe their shape as they evolve.

To formulate this rescaled flow we shift and scale a solution to the original flow. Let X
be a solution to the β-polygon flow (5), let α : R→ R+ be a positive scaling function and let
X̄ denote the n-vector in which each entry is the center of mass of X. Consider the polygon
Y := α(X − X̄). Multiplying by α rescales the solution and subtracting X̄ shifts X so its
center of mass is at the origin (see Figure 8).
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shift by X̄−−−−−−−−→

Figure 8: Shifting a polygon so its center of mass is at the origin.

Using the invariance properties in Proposition 5.1, the evolution of Y is given by

dY

dt
=

d

dt
(α(X − X̄))

=
dα

dt
(X − X̄) + αMXX

=
dα

dt

1

α
(α(X − X̄)) +

1

αβ
Mα(X−X̄)

=
dα

dt

1

α
Y +

1

αβ
MY Y.

We would like P1 to be a fixed point of the rescaled flow. Accordingly, let α(t) = 1/a(t),
where a(t) = (1 − βlβλkt)

−1/β is the scaling function found in the proof of Theorem 5.1.
Using da

dt
= aβ+1lβλk, we have

dY

dt
=
dα

dt

1

α
Y +

1

αβ
MY Y =

(
−a′

a2

)
aY + aβMY Y = −aβlβλkY + aβMY Y.

To see that P1 is a fixed point of this flow note that

−aβlβλkP1 + aβMP1P1 = −aβlβMP1 + aβlβMP1 = 0.

In order to observe quicker convergence and remove dependence on a(t), we adopt a new
time variable. Define τ by dt

dτ
= 1

lβaβ
. Then,

dY

dτ
=
dY

dt

dt

dτ

= (−aβlβλkY + aβMY Y )

(
1

lβaβ

)
= −λ1Y +

1

lβ
MY Y.

We define the rescaled β-polygon flow by the evolution equation

dY

dτ
= −λ1Y +

1

lβ
MY Y. (8)
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This new flow allows us to more easily observe the shapes of polygon while they evolve since
a solution to this flow can be shifted and scaled to generate a solution to the original flow and
vice versa. We use this flow to numerically compute the trajectories of different polygons in
Section 6.

6 Numerical Solutions

In this section we numerically solve the rescaled β-polygon flow (8) to investigate the asymp-
totic shapes of different polygons under the flow. Our numerical evidence suggests that
polygons with more than 5 vertices approach a regular polygon and quadrilaterals become
rhombic.

In Section 6.1 we outline the numerical method we used to approximate the trajectories
of polygons under the rescaled flow and in Sections 6.2-6.4 we discuss several examples. All
figures were created in Sage.

6.1 Approximation Technique

Since we do not have an explicit solution to the evolution equation for the rescaled β-polygon
flow (8), we approximate the solution using numerical methods. Specifically we use Euler’s
Method, a local linearization algorithm that approximates solutions to differential equations,
to generate discrete approximations of the trajectories of polygons under the flow.

Let Y be a polygon. To better understand the approximation we identify the vertices of
Y with points in R2, writing

Y =


Y0

Y1
...

Yn−1

 =


(x0, y0)
(x1, y1)

...
(xn−1, yn−1)

 .

The polygon Y is used as our initial condition. Let x
(i)
j and y

(i)
j denote the values of xj and

yj respectively at time τ = i.

Let f :=
dYj
dτ

. Since f depends on the vertices Yj−1, Yj and Yj+1 and outputs a vertex, it
is a function from R6 to R2. Write f = (fx, fy). Using the rescaled β-polygon flow (8),

fx = −λ1x
(i)
j +

1

lβ

(
lβj (x

(i)
j+1 − x

(i)
j ) + lβj−1(x

(i)
j−1 − x

(i)
j )
)
.

The y-component of f is analogous.
Treating Y as the initial condition, the approximation is defined by the equations

x
(i+1)
j = x

(i)
j + hf(x

(i)
j−1, y

(i)
j−1, x

(i)
j , y

(i)
j , x

(i)
j+1, y

(i)
j+1),

y
(i+1)
j = y

(i)
j + hf(x

(i)
j−1, y

(i)
j−1, x

(i)
j , y

(i)
j , x

(i)
j+1, y

(i)
j+1).

The parameter h is known as the step size and is the distance between successive time steps
during the approximation. If we iterate this process N times then the trajectory of the
vertex Yj is given by

Tj = {(xij, yij) | i = 0, . . . , N}.
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To approximate the evolution for 0 ≤ τ ≤ T we compute N = T/h time-steps.
In Sections 6.2-6.4, we use this scheme with a step size of h = 0.01 to approximate the

trajectories of different polygons under the β-polygon flow.

6.2 A Triangle

Theorem 5.2 states that every triangle asymptotically approaches a regular triangle under
the β-polygon flow. This is illustrated by the evolution of a triangle in Figure 9.1

Figure 9: Selected frames from the evolution of a triangle under the rescaled β-polygon, with
β = 1 for 0 ≤ τ ≤ 5.

The angles and side lengths of the triangle during the evolution process are shown in
Figure 10.

(a) Side lengths l0, l1, l2 over time τ (b) Angles θ0, θ1, θ2 over time τ

Figure 10: The evolution of sides and angles of a triangle under the rescaled β-polygon flow.

Notice that the angles of the triangle are each approaching 60◦ and side lengths are
approaching a fixed value. This example demonstrates how triangles become regular under
the flow.

1Animations of Figures 9, 11, 13a and 14a are available at youtu.be/dBh63BNxW5E.
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6.3 A Quadrilateral

Unlike the triangle, Theorem 5.4 only provides a week stability result for the square. Fur-
thermore, as first noticed in [3, Figure 4], quadrilaterals do seem to become square under
the rescaled β-polygon flow. This is demonstrated by the example in Figure 11.

Figure 11: Selected frames from the evolution of a quadrilateral under the β-polygon, with
β = 1 for 0 ≤ τ ≤ 5.

Since this quadrilateral does not approach a square shape its limit polygon is not equian-
gular. However, the quadrilateral appears to approach a rhombus, an equilateral polygon.
This idea is supported by the evolution of the side lengths and angles shown in Figure 12.

(a) Side lengths (b) Angles

Figure 12: The evolution of sides and angles of a quadrilateral under the rescaled β-polygon
flow.

Notice that all four side lengths are approaching a fixed value and opposite angles are
approaching fixed values. Other examples of quadrilaterals we considered exhibit the same
behavior and so we conjecture that all quadrilaterals become rhombic under the rescaled β-
polygon flow. We also observed that applying if we apply small perturbations to the square,
the limiting shape of the resulting polygon is not equiangular but it is equilateral. This
indicates that the square itself may be the only polygon that becomes asymptotically square
under the flow.
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6.4 Larger n-gons

In the case of n ≥ 5, to show that a polygon is becoming regular it suffices to show that it
is asymptotically becoming equilateral or equiangular, since these are equivalent conditions.
Figures 13 and 14 show examples of polygons in the n = 5 and n = 6 cases in which angles
and side lengths approach fixed points. This indicates that they are becoming regular. We
conjecture that for n ≥ 5, all polygons become regular under the rescaled β-polygon flow.

(a) Side lengths (b) Angles

Figure 13: The evolution of a pentagon under the rescaled β-polygon flow.

(a) Side lengths (b) Angles

Figure 14: The evolution of a hexagon under the rescaled β-polygon flow.
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7 Discussion

Semidiscrete curve-shortening flows are meant to approximate the behavior of the continuous
curve-shortening flow. However, no flow has been identified that asymptotically deforms
polygons into regular polygons.

The linear semidiscrete flow described in Section 4 is currently the only semidiscrete
scheme for which we have an explicit solution. Other flows, such as the β-polygon flow, are
nonlinear and so finding an explicit solution is difficult. Hence, numerical methods are a
useful tool to look at at the trajectories of polygons under semidiscrete flows. Our results
lead us to conjecture that a quadrilateral converges to a rhombus and for n ≥ 5, an n-
gon converges to a regular n-gon. Our numerical evidence could be used to inform future
theoretical results about the β-polygon flow.

Furthermore, with the numerical framework in place, our approximation methods could
be extended to investigate the trajectories of other polygon flows such as those in [14, 15].
Techniques in numerical analysis could be applied to fit the trajectories of points to known
curves to classify how fast different polygons converge. The intuition generated by numerical
insights could someday be helpful in establishing theoretical stability results about polygon
flows. Notably, proving that some semidiscrete flow asymptotically deforms polygons into
regular polygons would be an important contribution.

Acknowledgments. This paper is part of the author’s Senior Seminar project in partial
fulfillment of the Mathematics major at Ripon College. The author thanks project mentor
Dr. Andrea Young for her guidance.
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