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Abstract

Proteins are the most abundant biological macromolecules and, based on their
three-dimensional shape, perform life-sustaining functions. The process by which a
protein assumes its folded shape remains an open question and has intrigued biolo-
gist and chemists for decades. Mathematicians have joined forces with the natural
scientists and brought with them the tools of differential geometry, which prove pow-
erful for modeling proteins. We explore the method of [3] to model a small subset of
proteins using polyhelical space curves. We successfully modeled three alpha-helical
repeat proteins. The developed model has demonstrated possible uses in predicting
theoretical tertiary structures of proteins given a set of secondary structures—a step
in the right direction of solving the protein folding problem. Additionally, we provide
insight into the relationship between clashes and the model’s stability calculator, which
may improve the viability of their model.

1 Introduction

Proteins are large biomolecules typically regarded as the workhorses of biological systems.
Their title is undoubtedly based on the fact that proteins have such a wide range of function.
Proteins are responsible for immunity (e.g. antibodies), structural support (e.g. collagen),
catalyzing slow biological reactions (e.g. enzymes), and molecular signaling (e.g. insulin).

Incredibly, proteins accomplish all of this simply by utilizing their three-dimensional
shape. For example, antibodies can target and flag foreign materials likely to cause illness
(antigens) based on a perfect fit between the antibody’s binding pocket and the antigen.
Much like a lock and key, the antibody and its target antigen must match for an immune
response to be mounted. Even a small variation in shape can decrease the function of the
antibody to select a specific antigen. In this example, we see that a protein’s usefulness
is highly dependent on proper shape. This property holds in general. Therefore, integral
to a protein’s function—and by extension biological life—is the process by which a protein
assumes its active three-dimensional shape.

Proteins assume their final active shape through a process called protein folding. In
order to understand folding, it is first important to understand the composition of proteins.
Proteins consist of small monomer molecules called amino acids. Proteins can have anywhere
from tens to tens of thousands of amino acids depending on their function. Each amino acid
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consists of an amine group, a hydroxyl group, and a residue group attached to what is labeled
as the “alpha-carbon.” See Figure 1 .

Figure 1: Molecular structure of an amino acid with all relevant features labeled.
Image retrieved from http://dgbiochem.blogspot.com/2014/11/amino-acids-structure-and-
nomenclature.html.

The residue group of a specific amino acid differentiates it from other amino acids. The
residue groups vary in size, shape, electrostatic charge, and chemistry. This invariably
influences protein structure and function.

The amino acids that make up a protein are linked together by a series of peptide bonds.
Taken as a whole, these peptide bonds are considered the backbone of a protein, and the
backbone does not include the variable residue regions. See Figure 2 for detail.

Figure 2: Molecular structure of two amino acids linked by a peptide bond labeled by the
green circle. The backbone of a protein consists of a series of peptide bonds and includes
all the atoms labeled above except the residues labeled R1 and R2. Image retrieved from
wikipedia.org/wiki/Peptide bond.

At this point in the synthesis, the protein has not yet assumed its final three-dimensional
shape. Rather, the protein exists as a loose chain of amino acids. This is called the primary
structure. See Figure 3. The protein has no definite shape and is free to twist and turn. The
next step in the protein folding process is the development of secondary structures such as α-
helices and β-sheets (Figure 3). As the name implies, α-helices are helical structures where
roughly 3.6 amino acids constitute each turn in the helix. On the other hand, β-pleated
sheets are a collection of amino acids that lie in a single plane. Both secondary structures
work to stabilize the chain as it becomes more regulated and rigid. Nearby amino acids on
the backbone interact with each other to form local fixtures.

The final stage relevant to our model is the tertiary structure of the protein. In this stage,
the protein folds in on itself while preserving secondary structures. This is considered a global
process since amino acids from very distant parts of the protein chain can fold close to each
other. Guiding this process is the development of salt bridges and disulfide bonds, which are
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created by the interaction of amino acid residues. Additionally, proteins are subject to their
aqueous environments and tend to compact due to interactions with water molecules ([7]).

Figure 3: The sequence of protein folding
starting from the primary structure to the
final tertiary structure. Image retrieved from
schoolworkhelper.net/protein-structures-
primary-secondary-tertiary-quaternary.

Interestingly, a folded protein can be
completely denatured (i.e. unfolded), and
when placed under appropriate conditions,
refolded into the same exact functional
shape. Therefore, the shape of the pro-
tein is dependent on the sequence of amino
acids. Theoretically, the sequence of amino
acids could be used to predict the three-
dimensional shape ([7]).

This problem of finding the folded shape
of a protein given its sequence of amino
acids is called the protein folding problem.
The problem’s solution is highly sought after
since protein structure is so fundamental to
biological life, and the only way to deduce
the structure is to experimentally crystal-
lize the protein and gather X-ray diffraction
data. The crystallization process is delicate,
and collecting the necessary data to create
an accurate protein structure model is la-
bor intensive. Whereas determining protein
structure experimentally is an involved pro-
cess, determining the sequence of a protein
is straightforward. Thus, there is a real ad-
vantage to developing methods to determine
the elusive protein structure given the read-
ily available amino acid sequence.

As it turns out, the entire folding pro-
cess is guided by thermodynamics, and the
final protein structure minimizes total en-
ergy. Other researchers, like Lazaridis and
Karplus in [5] or Lundgren in [6], have tried
to understand protein folding by minimizing
a complex energy function on protein mod-
els. The work in [6] is incomplete since it only considers the backbone of a protein with
no regard for the residue amino acids. Additionally, the work was completed on randomly
generated protein backbones and not real proteins.

Rackovsky and Scheraga in [8] and [9] describe their efforts to understand the folding
of proteins by utilizing differential geometry. Using experimental data, they determined
the impact each residue had on the torsion and curvature of the backbone of the protein.
Continuing the use of differential geometry to study protein folding, Simmons and Weiner
in [10] modeled proteins with a mathematical ribbon and obtained differential equations to
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study folding behaviors.
Clearly there is an intersection between the fields of mathematics and chemistry. Haus-

rath and Goriely in [3] strike the perfect balance and develop a simple protein model using
straightforward techniques in differential geometry. This paper works through the develop-
ment of the model as laid out in [3] as well as expands on their work. In particular, we will
study the formation of stable tertiary protein structures given specific secondary structures.
To simplify this endeavor, we examine proteins that are composed entirely of α-helices. Such
proteins can be accurately modeled by simple polyhelices using differential geometry.

2 Methods

The methods below were adopted in part from [3]. The theory behind the construction of
polyhelices was obtained from Goriely and Hausrath’s work in [2].

2.1 Differential Geometry and Development of Polyhelix

Consider a space curve r = r(s) parameterized by arc length s. Next consider the Frenet
Frame at each point on the curve, where t(s) represents the tangent vector, n(s) represents
the normal vector, and b(s) represents the binormal vector. We know that we can describe
the change in these vectors by taking their derivatives with respect to s. This yields the
Frenet equations listed below:

r′ = t

t′ = κn

n′ = −κt+ τb

b′ = −τn,

where κ and τ are the curvature and torsion of the space curve, respectively. Each vector
in the Frenet Frame consists of three components and can be denoted via a subscript. For
example, t = 〈t1, t2, t3〉. With this understanding, define Y as

Y = [t1, n1, b1, t2, n2, b2, t3, n3, b3, r1, r2, r3]
T .

Notice that we can express the Frenet equations as a differential matrix equation
Y ′ = M(s) · Y , where

M =


F 0 0 0
0 F 0 0
0 0 F 0
V1 V2 V3 0

 , F =

 0 κ 0
−κ 0 τ
0 −τ 0.

 ,
and Vi is the 3× 3 matrix whose single entry is a 1 in row i column 1. The Vi submatrices
ensure that the derivative of the position vector r is equal to the tangent vector. In other
words, they ensure that r′ = t.

If M(s) is constant, then an exact solution to the matrix differential can be obtained.
This requires curvature and torsion to be constant. Under these circumstances we know that
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the solution is a helix. Now, if we suppose that M(s) is piecewise constant (i.e. curvature
and torsion are constant throughout intervals), then the solution to the differential equations
can still be found, and it would describe a piecewise helix. The piecewise helix is a series of
connected helical arcs and is referred to as a polyhelix.

Since each segment of the polyhelix consists of a constant curvature and torsion for some
prescribed distance, we can describe polyhelices by a curvature profile. The curvature profile
is a list of triples P = {(κi, τi, Li), i = 1..N}. The first segment of the polyhelix would be
given by (κ1, τ1, L1) where κ1 and τ1 are the curvature and torsion, respectively, over the
length of the polyhelix L1. The next segment would build off of the previous segment with
a new set of curvature, torsion, and length. See Figure 4.

Figure 4: The curvature profile for an example three segment polyhelix. Each colored
segment is itself a helix. Notice that in each segment the curvature and torsion are constant
over some length L(i).

In Figure 4, we can completely describe the three segment polyhelix by the list of triples
P = {(0.15, 0.1, 60), (0.45, 0.6, 20), (0.3, 0.25, 30)}. Each triple encodes all the necessary in-
formation to describe a segment. Taken together, they describe the red-blue-green polyhelix.

2.2 Solving the Matrix Differential Equation

We want to solve the equation Y ′ = M(s) · Y when M(s) is piecewise constant. We find

Y (s) = A(κ, τ ; s) · Y (0), 0 ≤ s ≤ L,
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where Y (0) encodes the initial conditions and A(κ, τ ; s) = esM is the matrix exponential. We
know that the matrix exponential is defined as the series esM = sI + sM + sM2

2!
+ sM3

3!
+ . . .,

where I is the identity matrix of appropriate size. This can be computed using Maple. Upon
simplification using the Taylor series definition of sine and cosine, we find

A(κ, τ ; s) =


a 0 0 0
0 a 0 0
0 0 a 0
b1 b2 b3 I3

 , a =

 1
α2 (τ 2 + κ2 cos(αs)) κ

α
sin(αs) κτ

α2 (1− cos(αs))
− κ
α

sin(αs) cos(αs) τ
α

sin(αs)
κτ
α2 (1− cos(αs)) − τ

α
sin(αs) 1

α2 (κ2 + τ 2 cos(αs))

 ,
where α =

√
κ2 + τ 2 and the 3× 3 submatrices bi have the single nonzero row i with entries

(bi)i1 =
αsτ 2 + κ2 sin(αs)

α3
,

(bi)i2 =
κ

α2
(1− cos(αs)),

(bi)i3 =
κτ

α3
(αs− sin(αs)), i = 1, 2, 3.

2.3 Constructing the Polyhelix

Let us examine the significance of this result. We have found the equations that completely
describe the segments of a polyhelix. For each segment, however, we need to orient it so that
the entire piecewise polyhelix is continuous. To accomplish this, we ensure that the Frenet
Frames between segments align. By aligning the Frenet Frames at the connection points, we
are guaranteed that at least the first and second derivatives agree.

To orient the segment, we need to multiply the A matrix by an initial condition vector
Y (0). In our case, we set the origin to be the starting point and position our Frenet Frame
along the x, y, and z−axes for simplicity. This means that Y (0) = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]T .
We can then define the first segment as

Y (1) = A(κ1, τ1; s) · Y (0).

The parametric expression in arc length for the first segment of the curve r(s) is given
by the last three components of the Y (1)(s) vector. Using Figure 4 as a reference, Y (1) =
A(0.15, 0.1; s) · Y (0) and corresponds to the red segment.

Similarly, we can define the second segment as

Y (2) = A(κ2, τ2; s− L1) · Y (1)(L1).

This construction is similar to the first segment because we multiply the A matrix by a set
of initial conditions. This time the initial condition vector is generated by evaluating Y (1)

at its last point, L1.
As discussed above, this ensures that the next segment picks up where the first segment

left off and also ensures the Frenet Frames align for smoothness. Additionally, we evaluate
the A matrix at s−L1 so that the first point in the second segment occurs when we feed the
value s = L1. Again, this is simply a manifestation of making the segments align. In Figure
4, Y (2) = A(0.45, 0.6; s− 60) · Y (1)(60) and corresponds to the blue segment.
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Continuing with this extended example in Figure 4, we can find the parametric equations
for the third green segment. It is described by Y (3) = A(0.3, 0.25; s − (80)) · Y (2)(80). Of
course, this method can be used to describe polyhelices of any number of segments, not just
three. For our purposes, we will focus on polyhelices with six segments.

2.4 Modeling Proteins

Goriely and Hausrath in [3] provide the curvature profiles for three proteins listed by their
PDB codes. As it turns out, all of these proteins can be modeled by a repeated six-segmented
polyhelix.

Figure 5: The curvature profile values for three helical repeat proteins listed by their PDB
codes as given by Goriely and Hausrath in [3].

Two of the helical segments are used to approximate the regular secondary α-helical
structures in the protein, and the other four are used to provide an accurate transition
between α-helices. Thus, the pattern is {α-helix1, turn, turn, α-helix2, turn, turn}. As a
note to discourage confusion, the turn segments (segments 2,3,5, and 6) are still described
by helices, but they are not obviously recognizable in the model since they are shorter in
length. This motif is repeated a number of times and accurately describes the three proteins.
Below is a graphic of the protein 1qqe as determined by X-ray crystal diffraction.

Figure 6: The protein 1qqe is considered a repeat polyhelix protein since the region in the
blue box is repeated throughout the protein. Image generated using UCSF Chimera software.
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In the above example, the protein 1qqe can be described by constructing the polyhelix
in the blue box using the data from Figure 5 and repeating it a number of times. The other
listed proteins also follow this scheme and can be generated accordingly.

2.5 Scoring Proteins

Once constructed, the proteins are quantitatively scored using a quality function. The quality
function was built with biological and chemical foundations in mind with the hopes that the
quality function encapsulates some of the crucial components of protein stability. This is a
greatly simplified analogue of the complex energy functions seen in [5] and [6]. In this paper,
we maintain the quality function used in [3]. While their quality function is fairly basic in
construction, it provides a good start for quantitatively describing protein stability.

To score the proteins, a set of sample points S = {r(sk)} is needed, where r is the
parameterized polyhelix. One chemical quality we want included in our model is the idea
of compactness. Proteins, under the influence of solvents, tend to curl up on themselves.
Therefore, we want proteins that are compact to be higher scoring than those that are loosely
packed.

To accomplish this we create a measure called contact order. If two points r(si) and r(sj)
are within some prescribed distance d of each other in three-dimensional space, then we say
that the two points form a contact. Of course, this occurs frequently when random sample
points are taken from local neighborhoods. However, we promote the concept of compacting
a protein by averaging the arc length distance between the sample points that produce a
contact. Notationally we can write

CO(d) =
1

LN

N∑
|si − sj|,

where L is the number of sample points, and N is the number of contacts.
Notice that a summand is large if two points form a contact but are distant from one

another by arc length. Therefore, the contact order scores proteins by measuring how well
distant points on the backbone are brought within a small distance in three dimensional
space.

However, we want to avoid points that are too close to one another. In other words,
we want to punish proteins that have self-intersections or near intersections. To do this we
define the quality function as

Q(c, d) =
CO(d)

2M(c)
,

where c is the clash distance, and M(c) is the number of points that are within the clash
distance. A clash is observed when two points on the model are within the prescribed clash
distance c. Notice that for a protein with many clashes, the quality function exponentially
drops toward zero regardless of the value of the contact order.
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3 Results and Discussion

3.1 Resources Used to Develop Model

The methods described above follow the procedure in [3]. Maple 18 was used to develop
and display protein models. Unless otherwise specified, for each protein, a set of 100 sample
points was used.

3.2 Modeling Proteins

The first step in modeling proteins was to use the curvature profiles of [3] (see Figure 5) to
generate parametric curves. Below is an image created in Maple that depicts part of the
model of protein 1qqe (Figure 7). Each of the six segments is given a different color.

Figure 7: Part of the model for protein 1qqe.

Notice that the red segment models an alpha-helix and starts at the origin since it is
the first segment. The blue, green, yellow, and black pieces are considered turn pieces and
correspond to segments 2,3,5, and 6, respectively, in the table displayed in Figure 5. Finally,
the purple piece models another alpha-helix given by segment 4. The other proteins were
also generated.

To complete the model of these proteins, the six-segment polyhelix must be repeated
a number of times. This capability was also coded into a Maple workbook. For example,
the protein 1b3u can be described by thirteen repeated six-segment polyhelices. Figure 8
depicts the modeled backbone of the protein in comparison with experimentally obtained
X-ray diffraction pattern.
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Figure 8: Comparison between experimentally determined structure of 1b3u and modeled
1b3u. On the left is the structure generated by X-ray diffraction methods retrieved from
RCSB PDB, and on the right is the polyhelix model of the protein generated using our model
in Maple 18.

Notice the remarkable similarities between the model and the actual protein. This indi-
cates that in at least a few cases, our repeated polyhelix model is capable of generating the
mathematical equations that accurately represent real proteins.

3.3 Exploring Curvature Space

Notice that all three polyhelices listed in Figure 5 have identical κ1, τ1, κ4, and τ4. In other
words, segments 1 and 4 are held constant (although their lengths can change) while the
remaining segments can vary in all parameters. This was an intentional move by Hausrath
and Goriely in [3]. In particular, they wanted to examine the space of all polyhelices of this
type.

In some ways, this is an attempt to examine biological connections between proteins. In
this example, all three have the same modeled alpha-helix segments while allowing the “turn
segments” of the model to vary. This addresses the possible folding patterns of proteins. In
particular, it models the last step in folding from the secondary to tertiary structure of a
protein. This model allows us to start with a secondary structure set, hold these fixtures
constant, and vary the connection pieces to simulate folding.

However, exploring this entire space is rather difficult given the freedom between all the
parameters. If we were to look at all polyhelices of this type, we would need to search
through a 14 parameter space. There are 14 parameters since each segment is described by a
triple, and there are six triples for each polyhelix. Thus, there are 18 parameters to describe
all six-segment polyhelices, and we hold four parameters constant (κ1, τ1, κ4, and τ4), which
yields a 14 parameter space.

Hausrath and Goriely looked at a two dimensional subspace of that 14 parameter space.
They accomplished this by formulating the 14 parameters in a vector. Next, v0 was defined to
be the vector with parameters to specify the polyhelix segment of protein 1qqe. The vectors
v1 and v2 were similarly constructed to represent proteins 1hz4 and 1b3u, respectively. Then,
they analyzed the space generated by the two new parameters a and b, which acted like scalars
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to produce a new set of parameters, v. Below is their construction:

v = v0 + a(v1 − v0) + b(v2 − v0).

Thus, the protein 1qqe lives at the point (a, b) = (0, 0) on the a-b plane. In addition, (1, 0)
corresponds to 1hz4, and (0, 1) corresponds to 1b3u.

The points in this plane represent a protein and can be scored by the quality function.
This provides a simple way of visualizing connections between polyhelical proteins. Since the
parameters a and b are scalars, small distances in the a-b plane translate to small perturba-
tions in protein structure. This provides a nice way to generate new polyhelical proteins. For
example, we can “watch” the transformation of the protein 1qqe to 1hz4 by slowly stepping
through a values. See Figure 9.

Figure 9: Pictures of the transformation of the protein 1qqe into 1hz4 by incrementing the
a component with a step size of 0.1.

While the two parameter subspace provides an easy way to modify many different pa-
rameters of a protein model, the computing power to determine anything quantitatively
using the quality function is substantially higher than Maple can produce in a reasonable
timeframe. Therefore, we instead looked to modifying one parameter in an attempt to gain
insight to the quality function.

3.4 Understanding the Quality Function: Contact Distance

As we attempt to score folding proteins, we need to be confident that our quality function is
properly functioning. One way to address this concern is to test results with expectations.
For example, as we increase the contact distance on the quality function, we expected to
observe more contacts and a higher quality function.
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We observed the average number of contacts on the protein 1qqe as we varied the contact
distance from d = 0.1 to d = 20 by a 0.1 step size. As a note of reference, 100 sample points
were used, and we averaged the results over 10 trials.

Figure 10: The average number of contacts over 10 trials is graphed against the contact
distance.

As expected, the number of contacts increases as the contact distance is increased. More-
over, it appears mostly linear except for a jump between d = 5 and d = 6. This sharp
increase in number of contacts is most likely due to the distance between the two modeled
alpha-helices (segment 1 and segment 4 from Figure 5). Since these helices account for the
bulk of the total length in the polyhelix, the majority of sample points will reside on them.
Therefore, when the contact distance is larger than the distance between the two helices, we
expect to find a jump in the number of contacts formed. This is supported by analyzing one
distance between the helices on the protein 1qqe. See Figure 11 below.
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Figure 11: A scale to indicate the distance between two points on opposite alpha-helices.
Units are likely in Angstroms, Å.

Therefore, we expect that soon after the contact distance increases past five units, the
number of contacts should increase dramatically since contacts can now form across helices
instead of only within. The importance of this detail can easily be understated, but it
may help inform our model. Specifically, helical stacking helps to stabilize proteins, and we
can build that feature into our model by setting the contact distance equal to the distance
between helices. More work is needed to determine the optimal distance between helices;
however, this result at least confirms that the contact order mechanism is capable of capturing
realistic properties.

3.5 Understanding the Quality Function: Relationship with Length

The first parameter that we looked at was the length of the first helix. Using 1qqe as a base,
we modified the length of the first helical segment and observed the quality function. We
used increments of 1 unit from a starting length of 0 to a final length of 568.

The measurements were taken with a contact distance of d = 21 and a clash distance of
c = 0.1. While there was a positive trend in the line of best fit, there was great variability in
the output of the quality function. In an attempt to smooth out the noise, for each length, we
observed the quality function 10 times and averaged the results. The final trend is displayed
in Figure 12 below.
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Figure 12: Scatter plot of the quality function versus the length of the first segment after
averaging the quality function over 10 trials. The line of best fit is also included.

Simply averaging the values 10 times greatly improved resolution. We tried to push our
resolution to the maximum by attempting a 100 trial average run, but the processing time
in Maple was unrealistic (i.e. on the order of a week).

From this data it is clear that our quality function has a bias for longer proteins given our
choice of parameters. This can be rationalized by considering the potential to create more
long-ranged connections, which bolster the contact order value and the quality function.
However, we suspected there would be a critical distance where the model protein was so
long and the sample points so spread out that fewer contacts would be made thereby causing
the quality function to suffer. In an attempt to find that critical distance, we hyperextended
segment one to 568 units, which is far past its natural length of 68.56. Our results in Figure
12 are inconclusive at best with regards to finding this critical distance. Perhaps we could
have observed this phenomenon if we used fewer samples points or had a smaller contact
distance.

3.6 Understanding the Quality Function: Relationship with Clashes

In order to examine the relationship of the quality function with clashing events, we con-
structed a protein that very obviously clashes with itself. See Figure 13 below.
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Figure 13: Depiction of a protein that nearly intersects with itself.

In fact, the protein was constructed in such a way that the first segment intersects with
the rest of the protein. Therefore, we would expect that as we increase the length of this
segment from 0 to its proper length of 68, the number of clashes would go up and the quality
function would go down.

However, this is not the result we found. Instead we found that the average number of
clashes steadily decreased as the length of the segment grew despite the fact that it was
crossing itself (Figure 14). As a result the protein quality function rose.

Figure 14: The average number of clashes and the quality function is analyzed as a function
of Segment 1 length. Both experiments were averaged among ten trials.

Clearly, this issue exposed one weakness of the simple quality function that the authors
in [3] used to score protein stability. The most disturbing issue about the construction was
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the way in which contacts and clashes were defined. In particular, the randomly generated
set of sample points may frequently distribute points nearby on the same segment. If the
points were close enough, they would be considered a clash, despite the reality that they were
simply generated near each other and were never in any real danger of intersecting. In other
words, while the intention of the clash counter was meaningful, the actual implementation
did not reflect the physical reality it was meant to describe as indicated by our previous
result.

In an effort to quickly remedy the previous fault in the model, we explored a new clash
counter. The new counter would only consider two points on separate segments to be a clash
if they were within the clash distance. This modification produced the desired results.

After applying the new clash counter, the same test was run on the self-intersecting
protein of Figure 13. Now we found that as the length of Segment 1 increased, the number
of clashes rose and the quality function plummeted (Figure 15).

Figure 15: The average number of clashes and the quality function is analyzed as a function
of Segment 1 length using the new clash counter. Both experiments were averaged among
ten trials.

A neater result is displayed in Figure 16, which depicts the number of clashes when the
threshold is increased to a clash distance of 3 as opposed to 2.
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Figure 16: The average number of clashes is analyzed as a function of Segment 1 length
using the new clash counter when the c = 3. This result is the average of ten trials.

Thus our modification to the clash counter produced the desired effects. This illustrates
the flexibility of the model, but also indicates that there could be other shortcomings in the
meaningfulness of the quality function.

4 Limitations and Future Work

While this model has successfully modeled three real proteins and is capable of describing
countless theoretical proteins, there are a number of limitations. The most glaring limita-
tion is the fact that we are not even addressing the protein folding problem directly. Instead
of starting with a chain of amino acids, we begin with secondary structures. However, re-
searchers like Katti et al ([4]) have contributed information about what types of sequences
create what secondary structures. This work makes possible the creation of databases that
would link short sequences to corresponding secondary structure. Therefore, it is not un-
realistic to start the protein folding problem from a set of secondary structures as that
information may become easier and easier to obtain.

Another limitation is that we are focused only on helical repeat proteins. Moreover, we
are not even exploring the global stability of the protein since we are only focused on the
quality of the unit cell that is repeated some number of times. For example, in Figure 6,
we explore the quality or stability of the region inside the blue box, but our model does not
consider the interactions between units (i.e. the entire protein). The repeat proteins were
chosen because of their simplicity, and moving forward we could attempt to model other
non-repeating proteins such as hemoglobin. The framework is in place. The only limiting
factor is obtaining the curvature profile data.

Additionally, it is possible to generalize even further and move away from alpha-helices to
explore other secondary structures. In particular, Hausrath and Goriely, who developed the
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mathematics to describe alpha-helices in [3], also developed similar equations for beta-sheets
in [1]. This expansion would open up the possibility of modeling nearly all proteins since
alpha-helices and beta-sheets are by far the most common secondary structures ([7]).

Instead of expanding into new territory, we suggest that we perfect our given model first.
In particular, the quality function is still the weakest aspect of our model. One issue is that,
given a random distribution of sample points, the quality function is wildly inconsistent. Any
definitive data is obtained only by averaging the quality function tens or hundreds of times
at the cost of hundreds of hours of computation. We suspect this could be easily overcome
by coding in Python or another programming language rather than Maple.

There is great potential in this model, and small refinements in the quality function will
yield promising results. As shown above, our small change in the clash counter helped to
make the model more realistic. We believe that by simply trying the model on different
proteins and adjusting outcomes to expectations, the model’s reliability and integrity will
drastically improve.

For instance, we can imagine implementing data about the residue sequences to improve
the accuracy of the quality function in determining protein stability. As mentioned in the
introduction, the amino acid residues are not considered as part of the backbone; however,
their chemistry and geometry influence the folding patterns of a protein. For example,
electrostatic charges may hold a protein in a contorted position that it would not otherwise
inhabit (and not otherwise be predicted by our quality function). We think that it would
be possible to model the chemistry of the residues by coding in premium rewards in the
quality function for bringing together points on the backbone that correspond to oppositely
charged residues. This would represent a real step forward in the protein folding problem
because from the literature surveyed, very few authors even consider the residue data due
to the complexity their incorporation adds to models.
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