
Leveraging a Real-Time Spatiotemporal Al Model for Surgical Resident Training and Education With Implications during Pandemic-Related Surgical Volume Changes

Yilun Zhang¹, Emmett Goodman², Chris Kennedy¹, Jevin Clark¹, Hao Wei Chen¹, Maren Downing¹, Jordan Bohnen¹, Serena Yeung², Gabriel Brat¹

1. Beth Israel Deaconess Medical Center, Boston, MA; 2. Department of Biomedical Data Science, Stanford University, Stanford, CA

Introduction/Problem

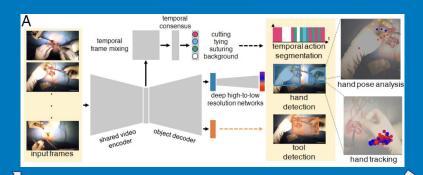
The COVID-19 pandemic exposed the existing need for more opportunities to provide real-time feedback for surgical skills for surgical residents.

Aim/Goal

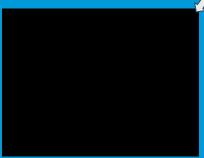
To Provide Automated Classification of Surgical Skill and Incorporate Real-Time Feedback

The Team

Gabriel Brat, MD, MPH

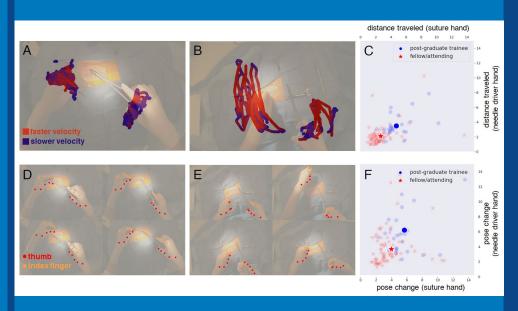


Serena Yeung, PhD



The Intervention

Real-Time Spatiotemporal Al Model



More Results/Progress to Date

From Understanding Surgical Technique...


Towards Understanding Surgical Skill

More Results/Progress to Date

Model for Implementation distance traveled (suture hand) 8 10 12 14 post-graduate trainee PGY1 Baseline fellow/attending driver hand) distance traveled Work on economy of motion by: Reduce distance traveled by needle driver hand (needle **PGY1.5** Work on economy of motion by: Continue to reduce distance traveled by needle driver hand but also that of suture hand post-graduate trainee Conserve hand pose by reducing unnecessary fellow/attending rotation pose change (needle driver hand) PGY2 New Baseline! Pred: PGY 3 Focus on conserving suture hand pose by reducing unnecessary pronation PGY3 pose change (suture hand) N = 104

Lessons Learned

Surgical Residents Require More Feedback during Case Load Changes

Automated evaluation of surgical skill is possible

Providing "Just in Time" feedback after engaging in a task increases retention

More discrete levels of training could allow for better than a binary skill classification

Next Steps

Improve integration of automated and remote forms of real-time feedback for surgical trainees

Potential for other situations whenever the training path could be disrupted

Encourage increased collaboration between institutions

Thank you to the peri-operative staff, the Shapiro Clinical Center, and the residents who helped make this possible!

For more information, contact:

Contact: gbrat@bidmc.harvard.edu